Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T04:28:34.810Z Has data issue: false hasContentIssue false

Ultrafast Dynamics of Nanotechnology Energetic Materials

Published online by Cambridge University Press:  26 February 2011

Hyunung Yu
Affiliation:
[email protected], University of Illinois, School of Chemical Sciences
Selezion A. Hambir
Affiliation:
[email protected], University of Illinois, School of Chemical Sciences
Dana D. Dlott
Affiliation:
[email protected], University of Illinois, School of Chemical Sciences, United States
Get access

Abstract

Our work involves understanding the chemical reaction dynamics of nanotechnology energetic materials on the time and length scales of individual molecules or nanoparticles. These types of measurements provide insights into fundamental mechanisms and make a close connection to modern atomistic simulation methods. We are especially interested in the relationships between performance and nanostructure. We have developed a number of diagnostic instruments in our laboratory that can be used to probe chemical reaction dynamics, reaction propagation over short length scales, and explosive performance. Some recent results on energetic materials containing Al nanoparticles and either nitrocellulose (NC) or Teflon oxidizers are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, S., Yang, Y., Sun, Z., and Dlott, D. D., Chem. Phys. Lett. 368, 189194 (2002).Google Scholar
2. Yang, Y., Sun, Z., Wang, S., and Dlott, D. D., J. Phys. Chem. B 107, 44854493 (2003).Google Scholar
3. Yang, Y., Sun, Z., Wang, S., Hambir, S. A., Yu, H., and Dlott, D. D., in Synthesis, Characterization and Properties of Energetic/Reactive Nanomaterials, MRS Symp. Proc., edited by Armstrong, R. W., Thadhani, N. N., Wilson, W. H., Gilman, J. J., Munir, Z. and Simpson, R. L. (Materials Research Society, Warrendale, PA, 2004), Vol.800, pp. 151160.Google Scholar
4. Yang, Y., Wang, S., Sun, Z., and Dlott, D. D., J. Appl. Phys. 95, 36673676 (2004).Google Scholar
5. Wang, S., Yang, Y., Sun, Z., and Dlott, D. D., AIP Confer. Proc. 706, 10651068 (2004).Google Scholar
6. Yang, Y., Wang, S., Sun, Z., and Dlott, D. D., Appl. Phys. Lett. 85, 14931495 (2004).Google Scholar
7. Dlott, D. D., Yu, H., Wang, S., Yang, Y., and Hambir, S. A., in Advances in Computational & Experimental Engineering & Sciences ‘04, edited by Atlurl, S. N. and Tadeu, A., (2004), pp. 14271432.Google Scholar
8. Wang, S., Yu, H., Yang, Y., and Dlott, D. D., Propellants, Explosives and Pyrotechnics 30, 148155 (2004).Google Scholar
9. Yang, Y., Wang, S., Sun, Z., and Dlott, D. D., Propell. Explos. Pyrotech. 30, 171177 (2004).Google Scholar
10. Zhu, X. D., Suhr, H., and Shen, Y. R., Phys. Rev. B 35, 30473050 (1987).Google Scholar
11. Shen, Y. R., Nature 337, 519525 (1989).Google Scholar
12. Patterson, J., Lagutchev, A. S., Huang, W., and Dlott, D. D., Phys. Rev. Lett. 94, 015501 (2005).Google Scholar
13. Lagutchev, A. S., Patterson, J. E., Huang, W., and Dlott, D. D., J. Phys. Chem. B 109, 50335044 (2005).Google Scholar
14. Heimer, T. A. and Heilweil, E. J., Bull. Chem. Soc. Jpn. 75, 899908 (2002).Google Scholar
15. Pangilinan, G. I. and Russell, T. P., J. Chem. Phys. 111, 445448 (1999).Google Scholar
16. Fried, L. E., Manaa, M. R., Pagoria, P. F., and Simpson, R. L., Annu. Rev. Mater. Res. 31, 291321 (2001).Google Scholar
17. Koulikov, S. G. and Dlott, D. D., J. Imag. Sci. Tech. 44, 111119 (2000).Google Scholar
18. Hare, D. E., Rhea, S. T., Dlott, D. D., D'Amato, R. J., and Lewis, T. E., J. Imag. Soc. Tech. 42, 9097 (1998).Google Scholar
19. Zel'dovich, Y. B. and Raiser, Y. P., Physics of Shock Waves and High-temperature Hydrodynamic Phenomena (Academic Press, New York, 1966).Google Scholar
20. Kim, H., Postlewaite, J. C., Zyung, T., and Dlott, D. D., J. Appl. Phys. 64, 29552958 (1988).Google Scholar