Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T11:10:03.016Z Has data issue: false hasContentIssue false

U- and Hf-Bearing Pyrochlore and Zirconolite and their Leached Layers Formed in Acidic Solution: Tem Investigation

Published online by Cambridge University Press:  11 February 2011

Huifang Xu
Affiliation:
Transmission Electron Microscopy Laboratory, Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, New Mexico 87131, USA.
Yifeng Wang
Affiliation:
Transmission Electron Microscopy Laboratory, Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, New Mexico 87131, USA. Sandia National Laboratories, Carlsbad, NM 88220, USA
Pihong Zhao
Affiliation:
Lawrence Livermore National Laboratory, L-219, Livermore, CA 94550, USA E-mail: [email protected]
William L. Bourcier
Affiliation:
Lawrence Livermore National Laboratory, L-219, Livermore, CA 94550, USA E-mail: [email protected]
Richard Van Konynenburg
Affiliation:
Lawrence Livermore National Laboratory, L-219, Livermore, CA 94550, USA E-mail: [email protected]
Henry F. Shaw
Affiliation:
Lawrence Livermore National Laboratory, L-219, Livermore, CA 94550, USA E-mail: [email protected]
Get access

Abstract

Transmission electron microscopy results from a sintered ceramics with stoichiometry of Ca(U0.5Ce0.25Hf0.25)Ti2O7 show the material contains both pyrochlore and zirconolite phases and structural intergrowth of zirconolite lamellae within pyrochlore. (001) plane of zirconolite is parallel to (111) plane of pyrochlore because of their structural similarities. The pyrochlore is relatively rich in U, Ce, and Ca with respect to the coexisting zirconolite. Average compositions for the coexisting pyrochlore and zirconolite at 1350 °C are Ca1.01(Ce3+0.13Ce4+0.19U0.52Hf0.18)(Ti1.95Hf0.05)O7 (with U/(U+Hf) = 0.72) and (Ca0.91Ce0.09)(Ce3+0.08U0.26Hf0.66Ti0.01)Ti2.00O7 (with U/(U+Hf) = 0.28) respectively. A single pyrochlore (Ca(U,Hf)Ti2O7) phase may be synthesized at 1350 °C if the ratio of U/(U+Hf) is greater than 0.72, and a single zirconolite (Ca(Hf,U)Ti2O7) phase may be synthesized at 1350 °C if the ratio of U/(U+Hf) is less than 0.28. An amorphous leached layer that is rich in Ti and Hf forms on the surface after the ceramics has been leached in pH 4 buffered solution. The thickness of the layer ranges from 5 nm to 15 nm. The leached layer functions as a protective layer and therefore reduces the leaching rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dosch, R. G., Headley, T. J., Northrup, C. J., and Hlava, P. F., Sandia National Laboratories Report, Sandia 82–2980, 84pp (1982).Google Scholar
2. Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M., and Ramm, E. J., Synroc. In Lutze, W. and Ewing, R. C. eds., “Radioactive Waste Forms for the Future.North-Holland, Amsterdam, pp. 233334 (1988).Google Scholar
3. Jostsons, A., Vance, E. R., Mercer, D. J., Oversby, V. M., Murakami, In T. and Ewing, R. C. eds. “Scientific Basis for Nuclear Waste Management XVIII.” Materials Research Society, Pittsburgh, 18 (1995), 775.Google Scholar
4. Weber, W. J., Ewing, R. C., and Lutze, W., Murphy, In W. M. and Knecht, D. A. eds., “Scientific Basis for Nuclear Waste Management XIX.Materials Research Society, Pittsburgh, 19 (1996), 25.Google Scholar
5. Bakel, A. J., Buck, E. C., and Ebbinghaus, B., (1997) In “Plutonium Future — The Science.” Los Alamos National Laboratories, 135136 (1997).Google Scholar
6. Begg, B. D., and Vance, E. R., Gray, In W. J. and Triay, I. R. eds. “Scientific Basis for Nuclear Waste Management XX.Materials Research Society, Pittsburgh, 20 (1997), 333.Google Scholar
7. Begg, B. D., Vance, E. R., Day, R. A., Hambley, M., and Conradson, S. D. In Gray, W. J. and Triay, I. R. eds. “Scientific Basis for Nuclear Waste Management XX.Materials Research Society, Pittsburgh, 20 (1997), 325.Google Scholar
8. Buck, E. C., Ebbinghaus, B., Bakel, A. J., and Bates, J. K., In Gray, W. J. and Triay, I. R. eds. “Scientific Basis for Nuclear Waste Management XX.Materials Research Society, Pittsburgh, 20 (1997), 1259.Google Scholar
9. Vance, E. R., MRS Bulletin, 19 (1994), 28.Google Scholar
10. Vance, E. R., Jostsons, A., Stewart, M. W. A., Day, R. A., Begg, B. D., Hambley, M. J., Hart, K. P., and Ebbinghaus, B. B., In “Plutonium Future — The Science.Los Alamos National Laboratories, page 19 (1997).Google Scholar
11. Vance, E. R., Hart, K. P., Day, R. A., Carter, M. L., Hambley, M., Blackford, M. G., and Begg, B. D., In Gray, W. J. and Triay, I. R. eds. “Scientific Basis for Nuclear Waste Management XX.Materials Research Society, Pittsburgh, 20 (1997), 341.Google Scholar
12. Xu, H., and Wang, Y., J. of Nuclear Materials, 275 (1999), 216.Google Scholar
13. Wang, Y., and Xu, H., In Smithe, R. W. and Shoesmith, D. W. ed. “Scientific Basis for Nuclear Waste Management XXIII.Materials Research Society, Pittsburgh, 23 (2000), 367.Google Scholar
14. Lumpkin, G. R., Smith, K. L., Mark, G., and Blackford, M. G., Murakami, In T. and Ewing, R. C. eds. “Scientific Basis for Nuclear Waste Management XVIII.Materials Research Society, Pittsburgh, 18 (1995), 885.Google Scholar
15. Solomah, A. G., Sridhar, T. S., and Jones, S. C., In “Advances in Ceramics, Vol. 20, Nuclear Waste Management II, American Ceramic Society, Columbus, p. 259 (1996).Google Scholar
16. Hench, L. L., Clarke, D. E., and Campbell, J., Chemical Waste Management, 5 (1984), 149.Google Scholar
17. Xu, H., and Wang, Y., J. of Nuclear Materials, 279 (2000), 100.Google Scholar
18. Fortner, J. A., Buck, E. C., Ellison, A. J. G., and Bates, J. K., Ultramicroscopy, 67 (1997), 77.Google Scholar
19. Xu, H., Wang, Y., and Barton, L. L., J. of Nuclear Materials, 265 (1999), 117.Google Scholar
20. Giré, R., Swope, R. J., Buck, E. C., Guggenheim, R., Mathys, D., and Reusser, E., In Smith, Robert W. and Shoesmith, David W. eds. “Scientific Basis for Nuclear Waste Management XXIII.Materials Research Society, Pittsburgh, 23 (2000), 519.Google Scholar
21. White, T. J., American Mineralogist, 69 (1984), 1156.Google Scholar
22. Bayliss, P., Mazzi, F., Munno, R., White, T. J., Mineralogical Magazine, 53 (1989), 565.Google Scholar
23. Xu, H., Wang, Y., and Barton, L. L., J. of Nuclear Materials, 273 (1999), 343.Google Scholar
24. Knauss, K. G., Bourcier, W. L., McKeegan, K. D., Merzbacher, C. I., Nguyen, S. N., Ryerson, F. J., Smith, D. K., Weed, H. C., and Newton, L., Mat. Res. Soc. Symp. Proc. 176 (1990), 371.Google Scholar
25. Roberts, S. K., Bourcier, W. L., and Shaw, H. F., Radiochim. Acta., 88 (2000), 539.Google Scholar
26. Helean, K. B., Navrotsky, A., Vance, E. R., Carter, M L., Ebbinghaus, B., Krikorian, O., Lian, J., Wang, L. M., and Catalano, J. G., J. Nuclear Materials, 303 (2002), 226.Google Scholar
27. Fortner, J. A., Fropf, A. J., Finch, R. J., Bakel, A. J., Hash, M. C., and Chamberlain, D. B., J. Nuclear Materials, 304 (2002), 56.Google Scholar