Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:25:54.688Z Has data issue: false hasContentIssue false

Transitions of Boron Carbide to B-C-N Thin Film

Published online by Cambridge University Press:  31 January 2011

Ruqiang Bao
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Materials Science, Troy, New York, United States
Zijie Yan
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Materials Science, Troy, New York, United States
Douglas B. Chrisey
Affiliation:
[email protected], United States
Get access

Abstract

Boron carbon nitride (B-C-N) thin films are attractive due to their potential as hard coatings and as semiconductors with varying band gap. Both B-C-N (BC0.24N0.24) thin films and boron carbide (B4C) thin films were deposited by radio-frequency magnetron sputtering at room temperature. Also, the transition of boron carbide to B-C-N was studied by bombarding the boron carbide thin film by ∼1 uA/cm2 4 keV N+ ions. The results show that the UV-Vis transmittance of B-C-N thin films is better than that of amorphous boron carbide and both B-C and B-N bonds exist in our B-C-N thin films. The nitrogen in our B-C-N thin films bonded with boron causes the XPS B 1s core level to shift 2 eV from that in the B4C boron carbide thin film. Ion bombardment shows that the N+ ion primarily reacts with boron to form B-N and this reaction causes the environmental change of carbon in the thin film and then the XPS C 1s core level to shift to 283.5 eV from 282.8 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tateyama, Y., Ogitsu, T., Kusakabe, K., Tsuneyuki, S., Phys. Rev. B 55, 161 (1997).Google Scholar
2. Liu, A. Y., Wentzcovitch, R. M., Cohen, M. L., Phys. Rev. B 39, 1760 (1989).Google Scholar
3. Lousa, A., Esteve, J., Muhl, S., Martnez, E., Diamond Relat. Mater. 9, 502 (2000).Google Scholar
4. Martιnez, E., Lousa, A., Esteve, J., Diamond Relat. Mater. 10, 1892 (2001).Google Scholar
5. Bejarano, G., Caicedo, J.M., Baca, E., Prieto, P., Balogh, A.G., Enders, S., Thin Solid Films 494, 53 (2006).Google Scholar
6. Ulrich, S., Ehrhardt, H., Theel, T., Schwan, J., Westermeyr, S., Scheib, M., Becker, P., Oeshsner, H., Dollinger, G., Bergmaier, A., Diamond Relat. Mater. 7, 839 (1998).Google Scholar
7. Tsai, T. H., Yang, T. S., Cheng, C. L., Wong, M. S., Mater. Chem. Phy. 72, 264 (2001).Google Scholar
8. Matsumuro, A., Kato, Y., Ohta, H., Mat. Res. Soc. Symp. Proc. 647, O11.5.1 (2001).Google Scholar
9. Cao, Z. X., Liu, L. M., Oechsner, H., J. Vac. Sci. Technol. B 20, 2275 (2002).Google Scholar
10. Teodorescu, V.S., Luches, A., Dinu, R., Zocco, A., Ciobanu, M.F., Martino, M., Sandu, V., Dinescu, M., Appl. Phys. A 69, S667 (1999).Google Scholar
11. Mannan, M.A., Nagano, M., Shigezumi, K., Kida, T., Hirao, N., Baba, Y., A. J. Appl. Sci. 5, 736 (2007).Google Scholar
12. Nesladek, M., Vanecek, M., Meykens, K., Haenen, K., Manca, J., Schepper, L. D., Pace, E., Pini, A., Rinati, G. V., Kimura, C., Etou, Y., Sugino, T., phys. stat. sol. (a) 185, 107 (2001).Google Scholar
13. Watanabe, M. O., Itoh, S., Mizushima, K., Sasaki, T., Appl. Phys. Lett. 68, 2962 (1996).Google Scholar
14. Essafti, A., Ech-chamikh, E., Azizan, M., Spectrosc. Lett. 41, 57 (2008).10.1080/00387010801938228Google Scholar
15. Bao, R., Chrisey, D. B., Thin Solid Films, submitted.Google Scholar
16. Sezer, A. O., Brand, J. I., Mater. Sci. Eng. B79, 191 (2001).Google Scholar
17. Shirai, K., Emura, S., J. Phys.: Condens. Matter 8, 10919 (1996).Google Scholar
18. Jacques, S., Guette, A., Bourrat, X., Langlais, F., Guimon, C., Labrugere, C., Carbon 34, 1135 (1996).Google Scholar
19. Jacobsohn, L.G., Schulze, R.K., Costa, M.E.H. Maia da, Nastasi, M., Surf. Sci. 572, 418 (2004).10.1016/j.susc.2004.09.020Google Scholar