Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T23:06:06.649Z Has data issue: false hasContentIssue false

Tip Enhanced Laser Ablation Sample Transfer for Mass Spectrometry

Published online by Cambridge University Press:  17 March 2015

Kermit K. Murray
Affiliation:
Louisiana State University, Department of Chemistry, Baton Rouge, LA, 70803
Suman Ghorai
Affiliation:
Louisiana State University, Department of Chemistry, Baton Rouge, LA, 70803
Chinthaka A. Seneviratne
Affiliation:
Louisiana State University, Department of Chemistry, Baton Rouge, LA, 70803
Get access

Abstract

Mass spectrometry is one of the primary analysis techniques for biological analysis but there are technological barriers in sampling scale that must be overcome for it to be used to its full potential on the size scale of single cells. Current mass spectrometry imaging methods are limited in spatial resolution when analyzing large biomolecules. The goal of this project is to use atomic force microscope (AFM) tip enhanced laser ablation to remove material from cells and tissue and capture it for subsequent mass spectrometry analysis. The laser ablation sample transfer system uses an AFM stage to hold the metal-coated tip at a distance of approximately 10 nm from a sample surface. The metal tip acts as an antenna for the electromagnetic radiation and enables the ablation of the sample with a spot size much smaller than a laser focused with a conventional lens system. A pulsed nanosecond UV or visible wavelength laser is focused onto the gold-coated silicon tip at an angle nearly parallel with the surface, which results in the removal of material from a spot between 500 nm and 1 µm in diameter and 200 and 500 nm deep. This corresponds to a few picograms of ablated material, which can be captured on a metal surface for MALDI analysis. We have used this approach to transfer small peptides and proteins from a thin film for analysis by mass spectrometry as a first step toward high spatial resolution imaging.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chughtai, K. and Heeren, R. M., Chem. Rev. 110, 32373277 (2010).CrossRefGoogle Scholar
Norris, J. L. and Caprioli, R. M., Chem. Rev. 113, 23092342 (2013).CrossRefGoogle Scholar
Gessel, M. M., Norris, J. L. and Caprioli, R. M., J. Proteomics 107, 7182 (2014).CrossRefGoogle Scholar
Heeren, R. M. A., Int. J. Mass Spectrom. in press DOI:10.1016/j.ijms.2014.04.021 , 19 (2014).Google Scholar
McDonnell, L. and Heeren, R. M., Mass Spectrom. Rev. 26, 606643 (2007).CrossRefGoogle Scholar
Rubakhin, S. S. and Sweedler, J. V., Methods Mol. Biol. 656, 2149 (2010).CrossRefGoogle Scholar
Amstalden van Hove, E. R., Smith, D. F. and Heeren, R. M. A., J. Chrom. A 1217, 39463954 (2010).CrossRefGoogle Scholar
Walch, A., Rauser, S., Deininger, S. and Höfler, H., Histochem. Cell Biol. 130, 421434 (2008).CrossRefGoogle Scholar
Moore, K. L., Lombi, E., Zhao, F.-J. and Grovenor, C. R. M., Anal. Bioanal. Chem. 402, 32633273 (2012).CrossRefGoogle Scholar
Passarelli, M. K., Ewing, A. G. and Winograd, N., Anal. Chem. 85, 22312238 (2013).CrossRefGoogle Scholar
Bich, C., Touboul, D. and Brunelle, A., Mass Spectrom. Rev., 442451 (2014).CrossRefGoogle Scholar
Schwartz, S. A. and Caprioli, R. M., Meth. Mol. Biol. 656, 319 (2010).CrossRefGoogle Scholar
Schwamborn, K. and Caprioli, R., Mol. Oncol. 4, 529538 (2010).CrossRefGoogle Scholar
Zavalin, A., Yang, J. and Caprioli, R., J. Am. Soc. Mass Spectrom. 24, 11531156 (2013).CrossRefGoogle Scholar
Zavalin, A., Yang, J., Haase, A., Holle, A. and Caprioli, R., J. Am. Soc. Mass Spectrom., 14 (2014).Google Scholar
Dill, A. L., Eberlin, L. S., Ifa, D. R. and Cooks, R. G., Chem. Comm. 47, 27412746 (2011).CrossRefGoogle Scholar
Wu, C., Dill, A. L., Eberlin, L. S., Cooks, R. G. and Ifa, D. R., Mass Spectrom. Rev. 32, 218243 (2013).CrossRefGoogle Scholar
Cooks, R. G., Ouyang, Z., Takats, Z. and Wiseman, J., Science 311, 15661570 (2006).CrossRefGoogle Scholar
Van Berkel, G. J., Pasilis, S. P. and Ovchinnikova, O., J. Mass Spectrom. 43, 11611180 (2008).CrossRefGoogle Scholar
Van Berkel, G. J., Sanchez, A. D. and Quirke, J. M. E., Anal. Chem. 74, 62166223 (2002).CrossRefGoogle Scholar
Elnaggar, M. S., Barbier, C. and Van Berkel, G. J., J. Am. Soc. Mass Spectrom. 22, 11571166 (2011).CrossRefGoogle Scholar
Roach, P. J., Laskin, J. and Laskin, A., Analyst 135, 2233 (2010).CrossRefGoogle Scholar
Shrestha, B. and Vertes, A., Anal. Chem. 81, 82658271 (2009).CrossRefGoogle Scholar
Nemes, P. and Vertes, A., Meth. Mol. Biol. 656, 159171 (2010).CrossRefGoogle Scholar
Galhena, A. S., Harris, G. A., Nyadong, L., Murray, K. K. and Fernandez, F. M., Anal. Chem. 82, 21782181 (2010).CrossRefGoogle Scholar
Shelley, J. T., Ray, S. J. and Hieftje, G. M., Anal. Chem. 80, 83088313 (2008).CrossRefGoogle Scholar
Laiko, V. V., Baldwin, M. A. and Burlingame, A. L., Anal. Chem. 72, 652657 (2000).CrossRefGoogle Scholar
Laiko, V. V., Taranenko, N. I., Berkout, V. D., Yakshin, M. A., Prasad, C. R., Lee, H. S. and Doroshenko, V. M., J. Am. Soc. Mass Spectrom. 13, 354361 (2002).CrossRefGoogle Scholar
Li, Y., Shrestha, B. and Vertes, A., Anal. Chem. 79, 523532 (2007).Google Scholar
Coello, Y., Jones, A. D., Gunaratne, T. C. and Dantus, M., Anal. Chem. 82, 27532758 (2010).CrossRefGoogle Scholar
Gray, A. L., Analyst 110, 551556 (1985).CrossRefGoogle Scholar
Russo, R. E., Mao, X., Liu, H., Gonzalez, J. and Mao, S., Talanta (2002).Google Scholar
Russo, R. E., Mao, X., Gonzalez, J. J., Zorba, V. and Yoo, J., Anal. Chem. 85, 61626177 (2013).CrossRefGoogle Scholar
Coon, J. J., McHale, K. J. and Harrison, W. W., Rapid Commun. Mass Spectrom. 16, 681685 (2002).CrossRefGoogle Scholar
Nyadong, L., Galhena, A. S. and Fernandez, F. M., Anal. Chem. 81, 77887794 (2009).CrossRefGoogle Scholar
Vaikkinen, A., Shrestha, B., Kauppila, T. J., Vertes, A. and Kostiainen, R., Anal. Chem. 84, 16301636 (2012).CrossRefGoogle Scholar
Shiea, J., Huang, M.-Z., Hsu, H.-J., Lee, C.-Y., Yuan, C.-H., Beech, I. and Sunner, J., Rapid Commun. Mass Spectrom. 19, 37013704 (2005).Google Scholar
Huang, M. Z., Jhang, S. S., Cheng, C. N., Cheng, S. C. and Shiea, J., Analyst 135, 759766 (2010).CrossRefGoogle Scholar
Park, S.-G. and Murray, K. K., J. Am. Soc. Mass Spectrom. 22, 13521362 (2011).CrossRefGoogle Scholar
Ovchinnikova, O. S., Kertesz, V. and Van Berkel, G. J., Anal. Chem. 83, 18741878 (2011).CrossRefGoogle Scholar
Lorenz, M., Ovchinnikova, O. S. and Van Berkel, G. J., Rapid Commun. Mass Spectrom. 28, 13121320 (2014).CrossRefGoogle Scholar
Park, S.-G. and Murray, K. K., J. Mass Spectrom. 47, 13221326 (2012).CrossRefGoogle Scholar
Park, S.-G. and Murray, K. K., Rapid Commun. Mass Spectrom. 27, 16731680 (2013).CrossRefGoogle Scholar
Hillenkamp, F., Unsold, E., Kaufmann, R. and Nitsche, R., Appl. Phys. 8, 341348 (1975).CrossRefGoogle Scholar
Hillenkamp, F., Unsold, E., Kaufmann, R. and Nitsche, R., Nature 256, 119120 (1975).CrossRefGoogle Scholar
Spengler, B. and Hubert, M., J. Am. Soc. Mass Spectrom. 13, 735748. (2002).CrossRefGoogle Scholar
Römpp, A., Schäfer, K. C., Guenther, S., Wang, Z., Köstler, M., Leisner, A., Paschke, C., Schramm, T. and Spengler, B., Anal. Bioanal. Chem. 405, 69596968 (2013).CrossRefGoogle Scholar
Savina, M. R. and Lykke, K. R., Anal. Chem. 69, 37413746 (1997).CrossRefGoogle Scholar
Behm, J., Hemminger, J. and Lykke, K. R., Anal. Chem. 68, 713719 (1996).CrossRefGoogle Scholar
Luxembourg, S. L., Mize, T. H., McDonnell, L. A. and Heeren, R. M. A., Anal. Chem. 76, 53395344 (2004).Google Scholar
Luxembourg, S., McDonnell, L., Mize, T. and Heeren, R. M., J. Proteome Res. 4, 671673 (2005).CrossRefGoogle Scholar
Soltwisch, J., Göritz, G., Jungmann, J. H., Kiss, A., Smith, D. F., Ellis, S. R. and Heeren, R. M. A., Anal. Chem. 86, 321325 (2014).CrossRefGoogle Scholar
Kossakovski, D. A., O'Connor, S. D., Widmer, M., Baldeschwieler, J. D. and Beauchamp, J. L., Ultramicrosc. (1998).Google Scholar
Bradshaw, J. A., Ovchinnikova, O. S., Meyer, K. A. and Goeringer, D. E., Rapid Commun. Mass. Spectrom, 23, 37813786 (2009).CrossRefGoogle Scholar
Stockle, R., Setz, P., Deckert, V., Lippert, T., Wokaun, A. and Zenobi, R., Anal. Chem. 73, 13991402 (2001).CrossRefGoogle Scholar
Schmitz, T. A., Gamez, G., Setz, P. D., Zhu, L. and Zenobi, R., Anal. Chem. 80, 65376544 (2008).CrossRefGoogle Scholar
Zoriy, M. V. and Becker, J. S., Rapid Commun. Mass. Spectrom, 23, 2330 (2009).Google Scholar
Ghorai, S., Seneveratne, C. A. and Murray, K. K., J. Am. Soc. Mass Spectrom. 26, 6370 (2015).CrossRefGoogle Scholar
Zhu, L., Gamez, G., Schmitz, T., Krumeich, F. and Zenobi, R., Anal. Bioanal. Chem. 396, 163172 (2010).CrossRefGoogle Scholar
Novotny, L., Prog. Optics 50, 137184 (2007).CrossRefGoogle Scholar
McLean, J. A., Stumpo, K. A. and Russell, D. H., J. Am. Chem. Soc. 127, 53045305 (2005).CrossRefGoogle Scholar