Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T12:34:43.828Z Has data issue: false hasContentIssue false

A Thermal Decomposition Approach for the Synthesis of Iron Oxide Microspheres

Published online by Cambridge University Press:  16 April 2013

Geetu Sharma
Affiliation:
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
Jeevanandam Pethaiyan
Affiliation:
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
Get access

Abstract

Iron oxide microspheres possess a wide range of applications in lithium storage batteries, sensors, photocatalysis, environmental remediation, magnetic resonance imaging and drug delivery. The most commonly used method for the preparation of iron oxide microspheres is hydrothermal synthesis. Besides this, other synthetic methods such as co-precipitation, electrostatic self- assembly, microwave and sol-gel have been reported. The reported synthetic methods usually require longer time (2 to 48 hours) and expensive experimental set up. In the present study, a novel low temperature thermal decomposition approach for the synthesis of iron oxide microspheres has been reported. Thermal decomposition of an iron-urea complex ([Fe(CON2H4)6](NO3)3) in a mixture of diphenyl ether and dimethyl formamide at 200 °C for 35 minutes leads to the formation of iron oxide microspheres. The microspheres were characterized using a variety of analytical techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and magnetometry. The XRD results indicated amorphous nature for the as prepared iron oxide, whereas after calcination at 500 °C, crystalline α-Fe2O3 phase is obtained. The SEM images indicated uniform spheres with an average diameter of 1.2 ± 0.3 μm. The DRS results too gave evidence for the formation of α-Fe2O3 on calcination of the microspheres at 500 oC.The field and temperature dependent magnetic measurement results indicated superparamagnetic behavior for the as prepared iron oxide microspheres indicating that the microspheres consist of iron oxide nanoparticles. On the other hand, an antiferromagnetic behavior was observed for the microspheres calcined at 500 °C. The present synthetic method is a novel method to produce magnetic materials with controlled morphologies.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yang, C., Wu, J., and Hou, Y., Chem. Commun. 47, 5130 (2011).CrossRefGoogle Scholar
Mou, X., Wei, X., Li, Y. and Shen, W., CrystEngComm 14, 5107 (2012).CrossRefGoogle Scholar
Bronstein, L. M., Atkinson, J. E., Malyutin, A. G., Kidwai, F., Stein, B. D., Morgan, D. G., Perry, J. M. and Karty, J. A., Langmuir 27, 3044 (2011).CrossRefGoogle Scholar
Zhang, L., Wu, J., Liao, H., Hou, Y. and Gao, S., Chem. Commun. 4378 (2009).CrossRefGoogle Scholar
Palchoudhury, S., Xu, Y., Goodwin, J. and Bao, Y., J. Appl. Phys. 109, 07E314 (2011).CrossRefGoogle Scholar
Cheon, J., Kang, N. J., Lee, S. M., Lee, J. H., Yoon, J. H. and Oh, S. J., J. Am. Chem. Soc. 126, 1950 (2004).CrossRefGoogle Scholar
Peng, S. and Sun, S., Angew. Chem., Int. Ed. 46, 4155 (2007).CrossRefGoogle Scholar
Wang, L., Fei, T., Lou, Z., and Zhang, T., ACS Appl. Mater. Interfaces 3, 4689 (2011).CrossRefGoogle Scholar
Sun, G., Dong, B., Cao, M., Wei, B., and Hu, C., Chem. Mater. 23, 1587 (2011).CrossRefGoogle Scholar
Muruganandham, M., Amutha, R., Sathish, M., Singh, T. S., Suri, R. P. S., and Sillanpaa, M., J. Phys. Chem. C 115, 18164 (2011).CrossRefGoogle Scholar
Xiong, Q. Q., Tu, J. P., Lu, Y., Chen, J., Yu, Y. X., Qiao, Y. Q., Wang, X. L., and Gu, C. D., J. Phys. Chem. C 116, 6495 (2012).CrossRefGoogle Scholar
Song, H. J., Jia, X. H., Qi, H., Yang, X. F., Tang, H. and Min, C. Y., J. Mater. Chem. 22, 3508 (2012).CrossRefGoogle Scholar
Liu, Y., Wang, Y., Zhou, S., Lou, S., Yuan, L., Gao, T., Wu, X., Shi, X. and Wang, K., ACS Appl. Mater. Interfaces 4, 4913 (2012).CrossRefGoogle Scholar
Liu, G., Deng, Q., Wang, H., Ng, D. H. L., Kong, M., Cai, W. and Wang, G., J. Mater. Chem. 22, 9704 (2012).CrossRefGoogle Scholar
Xuan, S., Wang, F., Lai, J. M. Y., Sham, K. W. Y., Wang, Y. X. J., Lee, S. F., Yu, J. C., Cheng, C. H. K., and Leung, K. C. F., ACS Appl. Mater. Interfaces 3, 237 (2011).CrossRefGoogle Scholar
Han, C., Zhao, D., Deng, C. and Hu, K., Mater. Lett. 70, 70 (2012).CrossRefGoogle Scholar
Cao, S. W., Zhu, Y. J. and Zeng, Y. P., J. Magn. Magn. Mater. 321, 3057 (2009).CrossRefGoogle Scholar
Lv, Y., Wang, H., Wang, X. and Bai, J., J. Cryst.Growth 311, 3445 (2009).CrossRefGoogle Scholar
Bi, H., Wang, X., Li, H., Xi, B., Zhu, Y. and Qian, Y., Solid State Commun. 149, 2115 (2009).CrossRefGoogle Scholar
Han, L., Shan, Z., Chen, D., Yu, X., Yang, P., Tu, B. and Zhao, D., J. Colloid Interf. Sci. 318, 315 (2008).CrossRefGoogle Scholar
Cao, S. W. and Zhu, Y. J., Nanoscale Res. Lett. 6, 1 (2011).CrossRefGoogle Scholar
Liu, B., Zhang, W., Zhang, Q., Zhang, H., Yu, J., Yang, X., J. Colloid Interf. Sci. 375, 70 (2012).CrossRefGoogle Scholar
Leon, L., Bustamante, A., Osorio, A., Olarte, G. S., Valladares, L. S., Barnes, C. H. W. and Majima, Y., Hyperfine Interact. 202, 131 (2011).CrossRefGoogle Scholar
Wang, B., Chen, J. S., Wu, H. B., Wang, Z., and Lou, X. W., J. Am. Chem. Soc. 133, 17146 (2011).CrossRefGoogle Scholar
Sharma, G. and Jeevanandam, P., RSC Adv., 3, 189 (2013).CrossRefGoogle Scholar
Zhao, S., Wu, H. Y., Song, L., Tegus, O. and Asuha, S., J. Mater. Sci. 44, 926 (2009).CrossRefGoogle Scholar
Zhu, Y., Jiang, F. Y., Chen, K., Kang, F. and Tang, Z. K., J. Alloys and Compds. 509, 8549 (2011)CrossRefGoogle Scholar
Sreeja, V. and Joy, P. A., Mater. Res. Bull., 42, 1570 (2007).CrossRefGoogle Scholar
Lu, H. M. and Meng, X. K., J. Phys. Chem. C, 114, 21291 (2010).CrossRefGoogle Scholar