Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T10:07:29.007Z Has data issue: false hasContentIssue false

Surface Perturbation by Energetic Particle Beams

Published online by Cambridge University Press:  22 February 2011

Che-Chen Chang
Affiliation:
Department of Chemistry, National Taiwan University, Taipei, Taiwan, R.O.C
Jung-Yen Yang
Affiliation:
Department of Chemistry, National Taiwan University, Taipei, Taiwan, R.O.C
Jaw-Chang Shieh
Affiliation:
Department of Chemistry, National Taiwan University, Taipei, Taiwan, R.O.C
Get access

Abstract

The state of the surface after energetic keV particle bombardment is investigated using molecular dynamics. The model utilizes a Ag{110} microcrystallite which is statically bombarded by Ar particles at normal incidence. After being bombarded at incident energy of 1 keV, the relocation probability is <0.3 for all the surface atoms initially residing within four lattice spacings from the target. The probability decreases exponentially as the initial distance of the substrate atom from the target is increased. The most probable distances of displacement from the lattice site also vary with the initial atomic distance from the target atom. The probable displacement of the surface atom, except the target atom, is less than one twentieth of the surface lattice spacing. An analytical formulae for the initial-distance dependence of the relocation probability is also proposed. The formula has three adjustable parameters which are determined by the least-squares method.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wilson, I. H., Zheng, N. J., Knipping, U., Tsong, I. S. T., Appl. Phys. Lett. 53 (1988) 2039.Google Scholar
2. a)Collart, E., Visser, R. J., Surf. Sci. 218 (1989) L497; b) G. E. McGuire Surf. Sci. 76 (1978) 131.Google Scholar
3. a)Smith, H. I. Craighead, H. G. Physics Today, February (1990) 24; b) A. H. Al-Bayati, K. G. Orrman-Rossiter, R. Badheka, D. G. Armour Surf. Sci. 249 (1991) 293; 237(1990) 213.Google Scholar
4. a)Weaver, B. D., Frankl, D. R., Blumenthal, R., Winograd, N., Surf. Sci. 222 (1989) 464; b) Y. Kido, I. Konomi, M. Kakeno, K. Yamada, K. Dohmae, J. Kawamoto, Nucl. Instr. Meth. B15 (1986) 42.Google Scholar
5. a)Oehrlein, G. S., Tromp, R. M., Tsang, J. C., Lee, Y. H., Petrillo, E. J., J. Electrochem. Soc. 132 (1985) 1441; b) K. L. Seaward, N. J. Moll, W. F. Stickle, J. Electron. Mat. 19 (1990) 385.Google Scholar
6. Posselt, M., Biersack, J. P., Nucl. Instru. Meth. B15 (1986) 20.CrossRefGoogle Scholar
7. Sakaki, H., Jpn. J. Appl. Phys. 19 (1980) L735.Google Scholar
8. Hara, T., Suzuki, H., Suga, A., J. Appl. Phys. 62 (1987) 4109.Google Scholar
9. Wong, H. F., Green, D. L., Liu, T. Y., Lishan, D. G., Bellis, M., J. Vac. Sci. Technol. B6 (1988) 1906.Google Scholar
10. Cheeks, T. L., Roukes, M. L., Scherer, A., Craighead, H. G., Appl. Phys. Lett. 53 (1988) 1964.A. Scherer, M. L. Roukes Appl. Phys. Lett. 55 (1989) 377.Google Scholar
11. Chang, C.-C., Surf. Interface Anal. 15 (1990) 79.Google Scholar
12. Firsov, O. B., JETP (Sov. Phys.) 6 (1958) 534.Google Scholar
13. Winograd, N., Garrison, B. J., Harrison, D. E., Phys. Rev. Lett. 41 (1978) 1120.CrossRefGoogle Scholar