Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T08:40:43.035Z Has data issue: false hasContentIssue false

Surface Evolution During Mbe Growth of Eute Studied by Uhv-Stm and Rheed Investigations

Published online by Cambridge University Press:  15 February 2011

N. Frank
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz
G. Springholz
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz
G. Bauer
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz
Get access

Abstract

MBE growth of 2% lattice-Mismatched EuTe on PbTe (111) is studied combining in-situ reflection high-energy electron diffraction (RHEED) with UHV scanning tunneling Microscopy (STM) to investigate the evolution of the EuTe surface Morphology. Using RHEED we have found that 2D nucleation and layer-by-layer growth occurs only in a very narrow range of growth conditions as a result of a strain induced coherent islanding of the surface[l], which leads to a roughening transition at the critical layer thickness hc of 45 Monolayers (ML). Starting with a very smooth initial (111) PbTe surface with terrace widths of 50 to 200 nm, islands of monolayer height are formed due to 2D nucleation of EuTe. For EuTe layer thicknesses below hc, the root mean square roughness (RMS) is essentially constant and equal to about one ML. Beyond hc, the surface roughness increases strongly and islands of about 20 ML height are observed for an EuTe layer thickness of 66 ML.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Springholz, G. and Bauer, G., Appl. Phys. Lett. 62, 2399 (1993).Google Scholar
2 Springholz, G., Phys. Rev. B, 48, (1993).Google Scholar
3 Besocke, K., Surf. Sci 181, 145 (1987).Google Scholar
4 Pongratz, P., Clemens, H., Fantner, E. J. and Bauer, G., Inst. Phys. Conf. Ser. No. 76 (7), 313 (1985).Google Scholar
5 Berger, P. R., Chang, K., Bhattacharya, P., Singh, J. and Bajaj, K. K., Appl. Phys. Lett. 58, 684 (1988).CrossRefGoogle Scholar
6 C Snyder, W., Orr, B. G., Kessler, D. and Sander, L. M., Phys. Rev. Lett. 66, 3032 (1991).CrossRefGoogle Scholar
7 Eaglesham, D. J. and Cernilo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
8 Marrée, P. M. J., Nakagawa, K., Mulders, F. M., Van der Veen, J. F., Kavanagh, K. L., Surf. Sci. 191, 305 (1987).CrossRefGoogle Scholar