Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T15:27:47.690Z Has data issue: false hasContentIssue false

Substitutionally-Functionalized vs Metallicity-Selected Single-Walled Carbon Nanotubes: A High Energy Spectroscopy Viewpoint

Published online by Cambridge University Press:  31 January 2011

Paola Ayala
Affiliation:
Christian Kramberger
Affiliation:
[email protected], Universität Wien, Vienna, Austria
Yasumitsu Miyata
Affiliation:
[email protected], University of Nagoya, Nagoya, Japan
Katrien De Blauwe
Affiliation:
[email protected], Universität Wien, Vienna, Austria
Hidetsugu Shiozawa
Affiliation:
[email protected], University of Surrey, Advanced Technology Institute, Guildford, United States
Rolf Follath
Affiliation:
[email protected], BESSY II, Berlin, Germany
Hiromichi Kataura
Affiliation:
[email protected], AIST, Tsukuba, Japan
Thomas Pichler
Affiliation:
[email protected], Universität Wien, Vienna, Austria
Get access

Abstract

The unique one-dimensional electronic and optical properties attributed to single-walled carbon nanotubes (SWCNTs) are mainly related to the peculiar local arrangement of sp2 hybridised carbon atoms. This structural configuration gives raise to interesting features, which can be identified with various spectroscopic techniques. In the case of SWCNTs, high energy spectroscopy methods represent effective key tools to analyse the modifications of the underlying basic correlation effects in the bonding environment, the charge transfer between functionalized nanotubes, and on-wall doping. More specifically, in this article we review the shape of the C1s photoemission (PES) response related to the density of states (DOS) of the valence band (VB) in SWCNTs and its changes upon on-wall functionalization and metallicity-sorting. In the last, the progress in the identification of changes in the site selective valence-band electronic structure is clarified in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saito, R., Dresselhaus, G., and Dresselhaus, M., Physical Properties of Carbon Nanotubes (1998) Imperial College Press, London.Google Scholar
2. Hamada, N., Sawada, S., and Oshiyama, A., Phys Rev Lett. 68, 1579 (1992).Google Scholar
3. Ayala, P., Arenal, R., Loiseau, A., Rubio, A., Pichler, T., Rev Mod Phy, 2010 (In Press)Google Scholar
4. Pichler, T., New Diam. Front. Carbon Technol, 11, 375 (2001).Google Scholar
5. Miyata, Y., Yanagi, K., Maniwa, Y., and Kataura, H., J Phys Chem C 112, 13187 (2008).Google Scholar
6. Scholl, A., Zou, Y., Schmidt, T., Fink, R., and Umbach, E., J Electron Spec Rel Phenom, 129, 1 (2003).Google Scholar
7. Kramberger, C., Rauf, H., Shiozawa, H., Knupfer, M., Buchner, B., Pichler, T., Batchelor, D., and Kataura, H., Phys Rev B, 75, 235437 (2007).Google Scholar
8. Ishii, H., Kataura, H., Shiozawa, H., Yoshioka, H., Otsubo, H., Takayama, Y., Miyahara, T., Suzuki, S., Achiba, Y., Nakatake, M., et al., Nature, 426, 540 (2003).Google Scholar
9. Rauf, H., Pichler, T., Knupfer, M., Fink, J., and Kataura, H., Phys Rev Lett, 93, 096805 (2004).Google Scholar
10. Ayala, P., Miyata, Y., Blauwe, K. De, Shiozawa, H., Feng, Y., Yanagi, K., Kramberger, C., Silva, S.R.P., Follath, R., Kataura, H., and Pichler, T., Phys Rev B, 80, 205427 (2009)Google Scholar
11. Doniach, S. and Sunjic, M., Jour Phys C, 3, 285 (1970).Google Scholar
12. Prince, K.C., Ulrych, I., Peloi, M., Ressel, B., Chab, V., Crotti, C., and Comicioli, C., Phys Rev B, 62, 6866 (2000).Google Scholar
13. Suzuki, S., Bower, C., Kiyokura, T., Nath, K. G., Watanabe, Y., and Zhou, O., J Elect Spectr Relat Phenom, 114, 225 (2001).Google Scholar
14. Goldoni, A., Cepek, C., Larciprete, R., Sangaletti, L., Pagliara, S., Paolucci, G., and Sancrotti, M., Phys Rev Lett, 88, 196102 (2002).Google Scholar
15. Ayala, P., Arenal, R., Rümmeli, M.H., Rubio, A., Pichler, T., Carbon, 48, 575 (2010).Google Scholar
16. Kim, S., Lee, J., Na, C., Park, J., Seo, K., and Kim, B., Chem Phys Lett, 413, 300 (2005).Google Scholar
17. Ayala, P., Grüneis, A., Gemming, T., Grimm, D., Kramberger, C., Rümmeli, M.H., Freire, F.L. Jr. , Kuzmany, H., Pfeiffer, R., Barreiro, A., Büchner, B., and Pichler, T., Jour Phys Chem C, 101, 2879 (2007)Google Scholar
18. Ayala, P., Freire, F.L. Jr. , Rümmeli, M.H., Grüneis, A., Pichler, T., Phys Stat Sol B, 244, 4051 (2007)Google Scholar
19. Elias, A.L., Ayala, P.., Zamudio, A., Grobosch, M., Cruz-Silva, E., Romo-Herrera, J.M., Campos, J., Terrones, H., Pichler, T., Terrones, M., Jour Nanosc Nanotech, 6, 1 (2010)Google Scholar
20. Gai, P., Stephan, O., McGuire, K., Rao, A., Dresselhaus, M., Dresselhaus, G., and Colliex, C., Jour Mat Chem, 14, 669 (2004).Google Scholar
21. Ayala, P., Plank, W., Grüneis, A., Kauppinen, E., Rümmeli, M., Kuzmany, H., and Pichler, T., Jour Mat Chem, 18, 5676 (2008)Google Scholar
22. Daothong, S., Parjanne, J., Kauppinen, E. I., Valkeapaa, M., Pichler, T., Singjai, P. and Ayala, P., Phys Stat Sol B, 246, 2518 (2009)Google Scholar
23. Shirasaki, T., Derré, A., Ménétrier, M., Tressaud, A., and Flandrois, S., Carbon, 38, 1461 (2000)Google Scholar