Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T16:59:49.475Z Has data issue: false hasContentIssue false

A Study of the Rubber-Like Behavior of Mono-Domain Au-Cd Martensite

Published online by Cambridge University Press:  10 February 2011

Xiaobing Ren
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan, [email protected]
Kazuhiro Otsuka
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan, [email protected]
Get access

Abstract

The origin of the rubber-like behavior in mono-domain Au-Cd martensite was explained in terms of a new model that focused attention on the change of long-range elastic interaction energy among vacancies during a domain reversion. Vacancies in martensite, the lower-symmetry phase, produce stress fields with lower symmetry. During martensite aging, vacancies tend to rearrange themselves to lower elastic interaction energy. The low-symmetry elastic field results in a low-symmetry vacancy configuration. When a stabilized martensite domain reverts to a new domain (twin) under external stress, the original vacancy configuration is inherited to the new domain, but such a configuration becomes a high energy configuration because of the lower symmetry of elastic field, and thus it tends to restore the original configuration by reverse twinning. The above vacancy reconfiguration model is consistent with the fact that the rubber-like behavior is closely related to vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ölander, A., J. Am. Chem. Soc. 56, p. 3819 (1932).Google Scholar
2. Otsuka, K. and Wayman, C.M., Review of the Deformation Behavior of Materials, edited by Feltham, P., Freund Publishing House, 1977, vol.2, pp. 81172.Google Scholar
3. Birnbaum, H. K. and Read, T.A., Trans. AIME, 218, p. 94 (1960).Google Scholar
4. Janssen, J., Van Humbeeck, J., Chandrasekaran, M., Mwanba, N. and Delaey, L., J. Phys. 43, suppl. 12, c4-p. 715 (1982).Google Scholar
5. Abu Arab, A. and Ahlers, M., J. Phys. 43, suppl, 12, c2-p. 709 (1982).Google Scholar
6. Barcelo, G., Rapacioli, R., and Ahlers, M., Scripta Metall. 12, p. 1069 (1978).Google Scholar
7. Murakami, Y., Nakajima, Y., Otsuka, K. and Ohba, T., J. de Phys. IV, 5, c8-p.1071 (1995).Google Scholar
8. Abu Arab, A. and Ahlers, M., Acta Metall. 36, p. 2627 (1988).Google Scholar
9. Tadaki, T., Okazaki, H., Nakata, Y., Shimizu, K., Mater. Trans. JIM, 31, p. 941 (1990).Google Scholar
10. Ahlers, M., Barcelo, G. and Rapacioli, R., Scripta Metall. 12, p. 1075 (1978).Google Scholar
11. Marukawa, K. and Tsuchiya, K., Scripta Metall. 32, p. 77 (1995).Google Scholar
12. Suzuki, T., Tonokawa, T., and Ohba, T., J. de. Phys. 5, c8- p. 1065 (1995).Google Scholar
13. Ohba, T., Otsuka, K., and Sasaki, S., Mater. Sci. Forum, 56–58, p. 317 (1990).Google Scholar
14. Ren, Xiaobing and Otsuka, K., to be published.Google Scholar
15. Nakajima, Y., Aoki, S., Otsuka, K. and Ohba, T., Mater. Lett. 21, p. 217 (1994).Google Scholar
16. Morii, K., Miyazaki, S. and Otsuka, K., Proc. ICOMAT-92, 1992, p. 1125.Google Scholar
17. Ren, Xiaobing, Wang, Xiaotian, Shimizu, K., and Tadaki, T., J. Mater. Sci. & Technol. 12, p. 57 (1996).Google Scholar
18. Tonokawa, T., Morito, S., Nakajima, Y., Ooishi, A., Otsuka, K. and Suzuki, T., Jpn. J. Appl. Phys 33, p. 2897 (1994).Google Scholar
19. Wasilewski, R. J., J. Phys. Chem. Solids, 29, p. 39 (1968).Google Scholar