Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T08:21:25.170Z Has data issue: false hasContentIssue false

Structural and electrical properties of LaNiO3 thin films grown on (100) and (001) oriented SrLaAlO4 substrates by chemical solution deposition method

Published online by Cambridge University Press:  29 January 2014

D. S. L. Pontes
Affiliation:
LIEC – Department of Chemistry, Universidade Federal de São Carlos, Via Washington Luiz, Km 235,P.O. Box 676, 13565-905, São Carlos, São Paulo,Brazil
F. M Pontes*
Affiliation:
Department of Chemistry, Universidade Estadual Paulista - Unesp, P.O. Box 473, 17033-360, Bauru, São Paulo,Brazil
Marcelo A. Pereira-da-Silva
Affiliation:
Institute of Physics of São Carlos, USP, São Carlos, 13560-250, São Paulo, Brazil UNICEP, São Carlos, 13563-470, São Paulo, Brazil
O. M. Berengue
Affiliation:
NanO LaB – Department of Physics, Universidade Federal de São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, 13565-905, São Carlos, São Paulo,Brazil
A. J. Chiquito
Affiliation:
NanO LaB – Department of Physics, Universidade Federal de São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, 13565-905, São Carlos, São Paulo,Brazil
E. Longo
Affiliation:
LIEC – Department of Chemistry, Universidade Federal de São Carlos, Via Washington Luiz, Km 235,P.O. Box 676, 13565-905, São Carlos, São Paulo,Brazil Institute of Chemistry, Universidade Estadual Paulista – Unesp, Araraquara, São Paulo - Brazil
Get access

Abstract

LaNiO3 thin films were deposited on SrLaAlO4 (100) and SrLaAlO4 (001) single crystal substrates by a chemical solution deposition method and heat-treated in oxygen atmosphere at 700°C in tube oven. Structural, morphological, and electrical properties of the LaNiO3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and electrical resistivity as temperature function (Hall measurements). The X-ray diffraction data indicated good crystallinity and a structural preferential orientation. The LaNiO3 thin films have a very flat surface and no droplet was found on their surfaces. Samples of LaNiO3 grown onto (100) and (001) oriented SrLaAlO4 single crystal substrates reveled average grain size by AFM approximately 15-30 and 20-35 nm, respectively. Transport characteristics observed were clearly dependent upon the substrate orientation which exhibited a metal-to-insulator transition. The underlying mechanism is a result of competition between the mobility edge and the Fermi energy through the occupation of electron states which in turn is controlled by the disorder level induced by different growth surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zeches, R. J., Rossell, M. D., Zhang, J. X., Hatt, A. J., He, Q., Yang, C.-H., Kumar, A., Wang, C. H., Melville, A., Adamo, C., Sheng, G., Chu, Y.-H., Ihlefeld, J. F., Erni, R., Ederer, C., Gopalan, V., Chen, L. Q., Schlom, D. G., Spaldin, N. A., Martin, L. W., Ramesh, R., Science 326, 977980 (2009).CrossRefGoogle Scholar
Boris, A. V., Matiks, Y., Benckiser, E., Frano, A., Popovich, P., Hinkov, V., Wochner, P., Castro-Colin, M., Detemple, E., Malik, V. K., Bernhard, C., Prokscha, T., Suter, A., Salman, Z., Morenzoni, E., Cristiani, G., Habermeier, H.-U., Keimer, B.,, Science 332, 937940 (2011).CrossRefGoogle Scholar
German, H., Nicola, S., Science 332, 922923 (2011).Google Scholar
Rondinelli, J. M., Caffrey, N. M., Sanvito, S., Spaldin, N. A., Phys Rev B 78, 155107155122 (2008).CrossRefGoogle Scholar
Gayathri, N., Raychaudhuri, A. K., Xu, X. Q., Peng, J. L., Greene, R. L., J. Phys.: Cond. Matt. 11, 2901(1999)Google Scholar
Lacorre, P., Torrance, J. B., Pannetier, J., Nazzal, A. I., Wang, P. W., Huang, T. C., J. Solid State Chem 91, 225237 (1991).CrossRefGoogle Scholar
Ueno, K., Yamaguchi, T., Sakamoto, W., Yogo, T., Kikuta, K., Hirano, S-i., Thin Solid Films 491, 7881 (2005).CrossRefGoogle Scholar
Pontes, F. M., Leite, E. R., Mambrini, G. P., Escote, M. T., Longo E, E., Varela, J. A., Appl Phys Lett 84, 248250 (2004).CrossRefGoogle Scholar
Scherwitzl, R., Gariglio, S., Gabay, M., Zubko, P., Gibert, M., Triscone, J. M., Metal-Insulator Transition in Ultrathin LaNiO3 Films, Phys Rev Lett 106, 246403246407 (2011).CrossRefGoogle ScholarPubMed
Wang, X., Olafsson, S., SandstroÈm, P., Helmersson, U., Thin Solid Films 360, 181186 (2000).CrossRefGoogle Scholar