Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T03:45:57.606Z Has data issue: false hasContentIssue false

Size-dependent melting of matrix-embedded Pb-nanocrystals

Published online by Cambridge University Press:  14 March 2011

H. Ehrhardt
Affiliation:
Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Karlsruhe, Germany
J. Weissmüller
Affiliation:
Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Karlsruhe, Germany Technische Physik, Universität des Saarlandes, Saarbrücken, Germany
G. Wilde
Affiliation:
Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Karlsruhe, Germany
Get access

Abstract

We report calorimetric data for the size-dependence of the melting temperature as well as the enthalpy and entropy of melting for nanoscale Pb particles in an Al matrix, prepared by high energy ball-milling. The results are discussed with respect to various models for the melting of small confined systems. We can rule out models based on a temperature-independent Gibbs excess free energy of the particle-matrix interface, and a model based on an increased meansquare displacement of the interfacial layer. The best agreement to the data is provided by modeling the interface as an inert layer of finite thickness, which does not participate in the phase transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Takagi, M., J. Phys. Soc. Jpn. 9, (1954), 359.Google Scholar
[2] Lai, S. L., Guo, J. Y., Petrova, V., Ramanath, G., Allen, L. H., Phys. Rev. Lett. 77, (1996), 99.Google Scholar
[3] Couchman, P. R., Jesser, W. A., Nature 269, (1977), 481.Google Scholar
[4] Mitome, M., Surf. Sci. Lett. 442 (1999), L953.Google Scholar
[5] Sheng, H. W., Lu, K., Ma, E., Acta Mater. 49, (1998), 5195.Google Scholar
[6] Unruh, K. M., Sheedan, J. F., Huber, T. E., Huber, C. A., NanoStruct. Mater. 3, (1993), 425.Google Scholar
[7] Sheng, H. W., Hu, Z. Q., Lu, K., NanoStruct. Mater. 9, (1997), 661.Google Scholar
[8] Chattopadhyay, K. and Goswami, R., Prog. Mat. Sci. 42, (1997), 287.Google Scholar
[9] Zhang, D.L. and Cantor, B., Acta Met. Mater. 39, (1991), 1595.Google Scholar
[10] Sheng, H.W., Lu, K. and Ma, E., Nanostruct. Mater. 5, (1998), 865.Google Scholar
[11] Zhang, L., Jin, Z.H., Zhang, L.H., Sui, M.L. and Lu, K., Phys. Rev. Lett. 85, (2000), 1484.Google Scholar
[12] Zhang, Z., , X. X., Jiang, Q., Physica B 270, (2000), 249.Google Scholar
[13] Hanszen, K.-J., Z. Physik 157, (1960), 523.Google Scholar
[14] Weissmüller, J. and Cahn, J.W., Acta Mater. 45, (1997), 1899.Google Scholar
[15] Cullity, B. D., Elements of x-ray diffraction, 2nd edition (London: Addison-Wesley, 1974), 363.Google Scholar
[16] Klug, H. P. and Alexander, L. E., X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd ed. (Wiley, New York, 1974), 618.Google Scholar
[17] Ehrhardt, H., Weissmüller, J. and Wilde, G., to be published.Google Scholar
[18] Magnusson, O.M., Regan, M.J., Kawamoto, E.H., Ocko, B.M., Pershan, P.S., Maskil, N., Deutsch, M., Lee, S., Penanen, K. and Berman, L.E., Physica B 221, (1996), 257.Google Scholar