Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T10:07:29.175Z Has data issue: false hasContentIssue false

Simulations of Ozone Detonation Using a Reactive Empirical Bond Order (REBO) Potential for the Oxygen System

Published online by Cambridge University Press:  10 February 2011

J. J. C. Barrett
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, DC 20375–5320
D. H. Robertson
Affiliation:
Department of Chemistry, University of Indiana - Purdue University at Indianapolis, Indianapolis, IN 46202
D. W. Brenner
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, DC 20375–5320
C. T. White
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, DC 20375–5320
Get access

Abstract

The short length and time scales associated with chemical detonations make these processes excellent candidates for study by MD simulation. Potentials used in these simulations must have sufficient flexibility to describe gas-phase properties of isolated reactant and product molecules, high density material generated under shock compression, and allow smooth adjustment of bonding forces during chemical reaction. The REBO formalism has been shown to provide these characteristics and allow the treatment of a sufficient number atoms for sufficiently long times to demonstrate a chemically-sustained shock wave (CSSW). In this paper we present a REBO potential describing the oxygen system for use in MD simulation of detonation in an ozone molecular solid. The potential reproduces spectroscopic properties of isolated gas-phase O2 and O3. It also describes an ozone molecular solid with density and speed of sound within physical norms. We observe detonation characteristics that depend on crystallographic orientation in simulations using a three dimensional ozone molecular crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brenner, D. W., White, C. T., Elert, M. L., and Walker, F. E., Int. J. Quant. Chem.: Quant. Chem. Symp., 23, 333 (1989)Google Scholar
2. White, C. T., Robertson, D. H., Elert, M. L., and Brenner, D. W., Microscopic Simulations of Hydrodynamic Phenomena, eds. Mareschal, M. and Holian, B. L., Plenum Press, New York, p. 111 (1992)Google Scholar
3. Brenner, D. W., Robertson, D. H., Elert, M. L., and White, C. T., Phys. Rev. Lett., 70, 2174 (1993)Google Scholar
4. Elert, M. L., Deaven, D. M., Brenner, D. W., and White, C. T., Phys. Rev. B, 39, 1453 (1989)Google Scholar
5. Robertson, D. H., Brenner, D. W., and White, C. T., Phys. Rev. Lett., 67, 3132 (1991)Google Scholar
6. Brenner, D. W., Phys. Rev. B, 42, 9458 (1990)Google Scholar
7. Mowrey, R. C., Brenner, D. W., Mintmire, J. W., and White, C. T., J. Phys. Chem., 95, 7138 (1991)Google Scholar
8. Robertson, D. H., Brenner, D. W., and White, C. T., J. Phys. Chem., 96, 6133 (1992)Google Scholar
9. Harrison, J. A., White, C. T., Colton, R. J., and Brenner, D. W., Surf. Sci., 271, 57 (1992)Google Scholar
10. Phys. Rev. B, 46, 9700 (1992)Google Scholar
11. MRS Bulletin, 18, 50 (1993)Google Scholar
12. J. Phys. Chem., 97, 6573 (1993)Google Scholar
13. Wear, 168, 127 (1993)Google Scholar
14. Sinnott, S. B., Colton, R. J., White, C. T., and Brenner, D. W., Surface Science, 316, 1055 (1994)Google Scholar
15. Harrison, J. A. and Brenner, D. W., J. Am. Chem. Soc., 116, 10399 (1994)Google Scholar
16. Barrett, J. J. C., Robertson, D. H., Brenner, D. W., and White, C. T., Phys. Rev. B, submitted.Google Scholar
17. See authors for details on the parameterization of the potential.Google Scholar
18. Kobashi, K., Kline, M. L., and Chandrasekharan, V., J. Chem. Phys., 71, 843 (1979)Google Scholar
19. Lauffer, J. C. and Leroi, G. E., J. Chem. Phys., 55, 993 (1971)Google Scholar
20. Tersoff, J., Phys. Rev. B, 37, 6991 (1988)Google Scholar
21. Tersoff, J., Phys. Rev. Lett., 56, 632 (1986)Google Scholar
22. Abell, G. C., Phys. Rev. B, 31, 6184 (1985)Google Scholar
23. Tersoff, J., Phys. Rev. B, 39, 5566 (1989)Google Scholar
24. Ito, T., Khor, K. E., and Sharma, S.Das, Phys. Rev. B, 41, 3893 (1990)Google Scholar
25. Tanaka, T. and Morino, Y., J. Mol. Spectrosc., 33, 538 (1970)Google Scholar
26. Hughes, R. H., J. Chem. Phys., 24, 131 (1956)Google Scholar
27. Barbé, A., Secroun, C., and Jouve, P., J. Mol. Spectrosc., 49, 171 (1974)Google Scholar
28. CRC Handbook of Chemistry and Physics, 64th ed., p. F-173, CRC Press, Boca Raton, FL, (1983)Google Scholar
29. Murrell, J. N., Sorbie, K. S., and Varandas, A. J. C., Mol. Phys., 32, 1359 (1976)Google Scholar
30. CRC Handbook of Chemistry and Physics, 64th ed., p. B118, CRC Press, Boca Raton, FL, (1983)Google Scholar
31. Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations Prentice Hall, Englewood Cliffs, NJ, (1971).Google Scholar
32. Eyring, H., Powell, R. E., Duffey, G. H., and Parlin, R. B., Chem. Revs., 45, 69 (1949)Google Scholar