Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T03:55:42.576Z Has data issue: false hasContentIssue false

Silicon Quantum Dots-Carbon Nanotube Composite as Anode Material for Lithium Ion Battery

Published online by Cambridge University Press:  06 September 2013

Lanlan Zhong
Affiliation:
Materials Science and Engineering Program, University of California, Riverside
Andi Xie
Affiliation:
Mechanical Engineering Department, University of California, Riverside
Lorenzo Mangolini
Affiliation:
Materials Science and Engineering Program, University of California, Riverside Mechanical Engineering Department, University of California, Riverside
Get access

Abstract

Silicon is a very promising material for anodes of lithium ion batteries. It exhibits a high theoretical capacity of 3579 mAh/g. However, during the lithiation and de-lithiation, silicon materials experience up to a 300% volume change, leading to poor cyclability [1-2]. Research shows that reducing the silicon particle size can mitigate this problem. Carbon nanotubes (CNTs) function well as electrode materials in electrolytic cells because of their high electrical conductivity and surface area. In this work, we combine silicon nanoparticles (Si NPs) and CNTs as anode materials. Si NPs are generated using a plasma-enhanced chemical vapor deposition technique and their surface is modified with a 12-carbon long aliphatic chain to impart solubility in non-polar solvents. They are applied onto a nanotube-based layer using a wet-phase deposition technique. SEM and TEM analysis confirm that they form a conformal coating onto the nanotube surface. The CNTs - Si NPs composite active material is tested in half-cells where lithium foil acts as counter electrode. We have achieved an average of 810 mAh/g discharge capacity for composites with a CNTs to Si NPs weight ratio of 1:1. We expect to be able to increase the discharge capacity by increasing the Si NPs weight content.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kasavajjula, U., Wang, C., Appleby, A., J. Power Sources (2007) 163, 10031039 CrossRefGoogle Scholar
Shu, J., Li, H., Yang, R., Shi, Y., Huang, X., Electrochemistry Communications 8 (2006) 5154 CrossRefGoogle Scholar
Verma, P., Maire, P., Novák, P., Electrochimica Acta. 55 (2010) 63326341 CrossRefGoogle Scholar
Winter, M., Besenhard, J., Electrochimica Acta 45, (1999) 3150 CrossRefGoogle Scholar
Liu, X., Zhong, L., Huang, S., Mao, S., Huang, J., Acs Nano, vol. 6, (2012)15221531 CrossRefGoogle Scholar
Chan, C., Peng, H., Liu, G., McIlwrath, K., Zhang, X. F., Huggins, R. A., Cui, Y., Nature (2008),3,3135 Google Scholar
Park, M., Cui, Y., Nano Lett.. (2009) 9(11), 38443847 CrossRefGoogle Scholar
Evanoff, K., Benson, J., Schauer, M., Kovalenko, I., Lashmore, D., Ready, W., Yushin, G., 6(11), (2012) 9837–9845CrossRefGoogle Scholar
Holzapfel, M., Buqa, H., Scheifele, W., Novák, P., Frank-Martin, , Chem. Commun. (2005) 15661568 CrossRefGoogle Scholar
Zhao, X., Hayner, C. M., Kung, M., Kung, H., Adv. Energy Mater. (2011) 1, 10791084 CrossRefGoogle Scholar
Choi, N., Yew, K., Choi, W., Kim, S., J. Power Sources. 177 (2008) 590594 CrossRefGoogle Scholar
Dimov, N., Kugino, S., Yoshio, M., Electrochimica Acta 48, (2003) 15791587 CrossRefGoogle Scholar
Martin, C., Crosnier, O., Retoux, R., Bélanger, D., Schleich, D., Adv. Funct. Mater. 2011, 21, 35243530 CrossRefGoogle Scholar
Mangolini, L., Thimsen, E., Kortshagen, U., Nano Letters, 2005. 5(4), 655659 CrossRefGoogle Scholar
Yang, S., Huo, J., Song, H., Chen, X., Electrochimica Acta 53 (2008) 22382244 CrossRefGoogle Scholar
Lee, S., Yabuuchi, N., Shao-horn, Y., Nature Nanotechnology, (2010), 5, 531537 CrossRefGoogle Scholar
Wang, X., Wang, J., Chang, H., Zhang, Y., Adv. Funct. Mater. (2007), 17, 36133618 CrossRefGoogle Scholar