Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:23:04.803Z Has data issue: false hasContentIssue false

Self-catalyzed InP Nanowires on Patterned Si Substrates

Published online by Cambridge University Press:  18 May 2015

Kenichi Kawaguchi
Affiliation:
NanoQuine, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
Hisao Sudo
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan.
Manabu Matsuda
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan.
Kazuya Takemoto
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan.
Tsuyoshi Yamamoto
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, 243-0197, Japan.
Yasuhiko Arakawa
Affiliation:
NanoQuine, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan. IIS, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
Get access

Abstract

Self-catalyzed growth of position-defined InP nanowires (NWs) was investigated on SiO2-mask-pattered Si substrates using metalorganic vapor-phase epitaxy. Using low growth temperatures and high group-III flow rates, pyramidal InP NWs were formed vertically on the mask openings. The diameter and tapering of the InP NWs were successfully controlled by the introduction of HCl and H2S gases during the NW growth. In addition, crystal growth of radial InP/InAsP/InP quantum wells on the sidewall of the InP NWs was performed on Si substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mohan, P., Motohisa, J., and Fukui, T., Appl. Phys. Lett. 88, 133105 (2006).CrossRefGoogle Scholar
Kawaguchi, K., Heurlin, M., Lindgren, D., Borgström, M. T., and Samuelson, L., 23rd International Conference on Indium Phosphide and Related Materials, Berlin, Germany, May 22-26, 2011.Google Scholar
Kawaguchi, K., Heurlin, M., Lindgren, D., Borgström, M. T., Ek, M., and Samuelson, L., Appl. Phys. Lett. 99, 131915 (2011).CrossRefGoogle Scholar
Dalacu, D., Kam, A., Austing, D. G., Wu, X., Lapointe, J., Aers, G. C., and Poole, P. J., Nanotechnol. 20, 395602 (2009).CrossRefGoogle Scholar
Kawaguchi, K., Sudo, H., Matsuda, M., Ekawa, M., Yamamoto, T., and Arakawa, Y., Appl. Phys. Lett. 104, 063102 (2014).CrossRefGoogle Scholar
Kawaguchi, K., Sudo, H., Matsuda, M., Ekawa, M., Yamamoto, T., and Arakawa, Y., MRS Proceedings, mrsf13-1659-ss16-05 (2014).CrossRefGoogle Scholar
Kawaguchi, K., Sudo, H., Matsuda, M., Ekawa, M., Yamamoto, T., and Arakawa, Y., International Conference on Solid State Devices and Materials, Tsukuba, Japan, Sep. 8-11, 2014.Google Scholar
Mattila, M., Hakkarainen, T., Lipsanen, H., Jiang, H., and Kauppinen, E. I., Appl. Phys. Lett. 89, 063119(2006).CrossRefGoogle Scholar
Gao, L., Woo, R. L., Liang, B., Pozuelo, M., Prikhodko, S., Jackson, M., Goel, N., Hudait, M. K., Huffaker, D. L., Goorsky, M. S., Kodambaka, S., and Hicks, R. F., Nano Lett. 9, 2223 (2009).CrossRefGoogle Scholar
Novotny, C. J. and Yu, P. K. L., Appl. Phys. Lett. 87, 203111 (2005).CrossRefGoogle Scholar
Ren, F., Ng, K. W., Li, K., Sun, H., and Chang-Hasnain, C. J., Appl. Phys. Lett. 102, 012115 (2013).Google Scholar
Agnello, P. D. and Ghandhi, S. K., J. Cryst. Growth 73, 453 (1985).CrossRefGoogle Scholar
Tsang, W.T., Kapre, R., Sciortino, P.F. Jr., J. Cryst. Growth 136, 42 (1994).CrossRefGoogle Scholar
Borgström, M. T., Wallentin, J., Trägårdh, J., Ramvall, P., Ek, M., Wallenberg, L. R., Samuelson, L., and Deppert, K., Nano Res 3, 264 (2010).CrossRefGoogle Scholar