Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T04:32:30.075Z Has data issue: false hasContentIssue false

Point Defect Detector Studies of Oxidized Silicon

Published online by Cambridge University Press:  25 February 2011

H. L. Meng
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
K. S. Jones
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
S. Prussin
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

Ion implantation and thermal oxidation are device fabrication processes that lead to perturbation of equilibrium point defects concentration in silicon. This study investigates the interaction between oxidation-induced point defects and type II dislocation loops intentionally introduced in silicon via ion implantation. The type II dislocation loops were introduced via Si implants into (100) Si wafers at 50 keV to a dose ranging from 2×1015 to 1×1016/cm2. The subsequent furnace annealing at 900 °C was done for times between 30 min and 4 hr in either a dry oxygen or nitrogen ambient. Plan-view transmission electron microscopy (PTEM) was used to characterize the increase in atom concentration bound by dislocation loops as a result of oxidation. The results show type II dislocation loops can be used as point defect detector and they are efficient in measuring oxidation-induced point defects. It is also shown that the measured net interstitials flux trapped by dislocation loops is linearly proportional to the total supersaturation of interstitials as measured by oxidation enhanced diffusion (OED) studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jones, K. S., Prussin, S., and Weber, E., Appl. Phys., A41, 1 (1988).CrossRefGoogle Scholar
2. Lin, A. M.-R., Dutton, R. W., Antoniadis, D. A., and Tiller, W. A., J. Electrochem. Soc., 128, 1121 (1981).CrossRefGoogle Scholar
3. Jones, K. S. and Venables, D., J. Appl. Phys., 69, 2931 (1991).CrossRefGoogle Scholar
4. Murarka, S. M., Phys. Rev., B16, 2849, (1977).CrossRefGoogle Scholar
5. Tan, T. Y. and Goesele, U., Appl. Phys. Lett., 22, 86 (1981).CrossRefGoogle Scholar
6. Leroy, B., Philos. Mag. 55, 159 (1987).CrossRefGoogle Scholar
7. Fathy, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys., 61, 289 (1989).Google Scholar
8. Goesele, U. and Strunk, H., Appl. Phys., 20, 265 (1979).CrossRefGoogle Scholar
9. Hu, S. M., J. Appl. Phys., 45, 1567 (1974).CrossRefGoogle Scholar
10. Tiller, W. A., J. Electrochem. Soc., 127, 619 (1980).CrossRefGoogle Scholar
11. Packán, P. A. and Plummer, J. D., J. Appl. Phys., 68, 4327 (1990).CrossRefGoogle Scholar
12. Masetti, G., Slomi, S., and Soncini, G., Philos. Mag., 22, 613 (1976).CrossRefGoogle Scholar
13. Taniguchi, K., Kurosawa, K., and Kashiwag, M., J. Electrochem. Soc., 127, 2243 (1980).CrossRefGoogle Scholar
14. Antoniadis, D. A. and Moskowitz, I., J. Appl. Phys., 53, 6788 (1982).CrossRefGoogle Scholar
15. Allen, W. G., Solid-State Electron., 16, 709 (1973).CrossRefGoogle Scholar
16. Antoniadis, D. A., Gonzalez, A. G., and Dutton, R. W., Appl. Phys. Lett., 22, 1030 (1978).CrossRefGoogle Scholar
17. Prussin, S., J. Appl. Phys. 42, 2850 (1972).CrossRefGoogle Scholar
18. Drum, C. M. and van Gelder, W., J. Appl. Phys., 42, 4465 (1972).CrossRefGoogle Scholar
19. Hsieh, C. M. and Maher, D. M., J. Appl. Phys., 44, 1302 (1973).CrossRefGoogle Scholar
20. Krivanek, O. L. and Maher, D. M., Appl. Phys. Lett., 22, 451 (1978).CrossRefGoogle Scholar
21. Hu, S. M., J. Appl. Phys., 57, 4527 (1985).CrossRefGoogle Scholar
22. Massoud, H. Z., Plummer, J. D. and Irene, E. A., J. Electrochem. Soc., 132, 2685 (1985).CrossRefGoogle Scholar
23. Ghandhi, S. K., VLSI Fabrication Principles (John Wiley & Sons, New York, 1983), p. 388.Google Scholar
24. Deal, B. E. and Grove, A. S., J. Appl. Phys., 26, 3770 (1965).CrossRefGoogle Scholar
25. Meng, H. L. and Jones, K. S. (unpublished).Google Scholar
26. Antoniadis, D. A., J. Electrochem. Soc., 129, 1093 (1982).CrossRefGoogle Scholar
27. Fathy, P., Barbuscia, G., Moslehi, M., and Dutton, R. W., App. Phys. Lett., 46, 784 (1985).Google Scholar