Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T05:05:03.242Z Has data issue: false hasContentIssue false

Plasticity in Nanomaterials

Published online by Cambridge University Press:  11 February 2011

Guo-Dong Zhan
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616
Joshua D. Kuntz
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616
Julin Wan
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616
Amiya K. Mukherjee
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616
Get access

Abstract

There have been many predictions of the reinforcing effects of carbon nanotubes in various composite matrices but large improvements in properties have not yet been convincingly demonstrated. In the present study, we have successfully realized this possibility in reinforcing nanocrystalline alumina. Fully dense single-wall carbon nanotubes (SWCN)/Al2O3 nanocomposites with nanocrystalline alumina matrix have been fabricated at sintering temperatures as low as 1150°C by spark-plasma-sintering (SPS). A fracture toughness of 9.7 MPam1/2, nearly three times that of pure nanocrystalline alumina, has been achieved in the 10 vol.% SWCN/Al2O3 nanocomposite. Moreover, high-strain-rate superplasticity has been achieved in Al2O3/ZrO2/MgAl2O4 nanocomposite with truly nanocrystalline grain size of 100 nm. Compression superplastic tests were conducted in the temperature range of 1300–1450°C at strain rates 10-3-10-1 s-1. The results generated a stress exponent of ∼ 2 and an activation energy of ∼ 620 kJ/mol.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhan, G.-D., Kuntz, J. D., Wan, J, and Mukherjee, A. K., Nature Materials, 2, 38, 2003.Google Scholar
2. Calvert, P., Nature, 357, 365 (1992).Google Scholar
3. Subramooney, S., Adv. Mater. 15, 1157 (1998).Google Scholar
4. Yu, M-F., Files, B. S., Arepalli, S., and Ruoff, R. S., Phys. Rev. Lett. 84, 5552 (2000).Google Scholar
5. Sherby, O.D., Nieh, T. G. and Wadsworth, J., Mater. Sci. Forum, 243–245, 11 (1997).Google Scholar
6. Langdon, T. G., Mater. Sci. Forum, 304–306, 13 (1999).Google Scholar
7. Kim, B. N., Hiraga, K., Morita, K. and Sakka, Y., Nature, 413, 288 (2001).Google Scholar
8. Morita, K., Hiraga, K., and Sakka, Y., J. Am. Ceram. Soc., 85, 1900 (2002).Google Scholar
9. Bronikowski, M. J., Willis, P. A., Colbert, D. T., Smith, K. A., and Smalley, R. E., J. Vac. Sci. Technol. 19, 1800 (2001).Google Scholar
10. Nikolaev, P., et al. Chem. Phys. Lett. 313, 91 (1999).Google Scholar
11. Antis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc., 64, 533 (1981).Google Scholar
12. Laurent, Ch., Peigney, A., Dumortier, O., and Rousset, A., J. Euro. Ceram. Soc. 18, 2005 (1998).Google Scholar
13. Ma, R. Z., Wu, J., Wei, B. Q., Liang, J., and Wu, D. H., J. Mater. Sci. 33, 5243 (1998).Google Scholar
14. Siegel, R. W., et al. Scripta Mater. 44, 2061 (2001).Google Scholar
15. Flahaut, E., et al. Acta Mater. 48, 3803 (2000).Google Scholar
16. Cannon, R. M., Rhodes, W. H. and Heuer, A. H., J. Am. Ceram. Soc., 63, 46 (1980).Google Scholar
17. Clarisse, L., Baddi, R., Baille, A., Crampon, J., Duclos, R. and Vicens, J., Acta mater., 45, 3843 (1997).Google Scholar
18. Gust, M., Goo, G., Wolfenstine, J. and Mecartney, M. L., J. Am. Ceram. Soc., 76, 1681 (1993).Google Scholar
19. Oishi, Y., Ando, K., and Sakka, Y., in Advanced Ceramics, Vol.7, Additives and Interfaces in Electronic Ceramics. edited by Yan, M. F. and Heuer, A. H.. American Ceramic Society, Columbus, OH, pg. 208 (1993).Google Scholar