Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T08:01:58.262Z Has data issue: false hasContentIssue false

Photovoltaic Devices Based on Single Wall Carbon Nanotubes

Published online by Cambridge University Press:  31 January 2011

Zhongrui Li
Affiliation:
[email protected], University of Arkansas at Little Rock, nanotechnology Center, 2801 S. University Ave, Little Rock, Arkansas, 72204, United States
Viney Saini
Affiliation:
[email protected], University of Arkansas at Little Rock, UALR Nanotechnology Center, 2801 S. Univ. Ave., ETAS-151, Little Rock, Arkansas, 72204, United States
Shawn Edward Bourdo
Affiliation:
[email protected], University of Arkansas at Little Rock, Nanotechnology Center, 2801 S University Ave, Little Rock, Arkansas, 72204, United States, 501-569-8323
Liqiu Zheng
Affiliation:
[email protected], University of Arkansas at Little Rock, Nanotechnology Center, 2801 S University Ave, Little Rock, Arkansas, 72204, United States, 501-569-8323
Enkeleda Dervishi
Affiliation:
[email protected], University of Arkansas at Little Rock, UALR Nanotechnology Center, 2801 S. university ave, Little Rock, Arkansas, 72204, United States, 501-569-3203
Alexandru S. Biris
Affiliation:
[email protected], United States
Get access

Abstract

Single-wall carbon nanotubes (SWNTs) are potentially an attractive material for PV applications due to their many unique structural and electrical properties. SWNTs can be directly configured as energy conversion materials to fabricate thin-film solar cells, with nanotubes serving as both photogeneration sites and charge carriers collecting/transport layers. SWNTs can be modified into either p-type conductor through chemical doping (like thionyl chloride, or just exposure to air) or n-type conductor through polymer (like polyethylene imine) functionalization. The solar cells consist of either a semitransparent thin film of p-type nanotubes deposited on an n-type silicon wafer or a semitransparent thin film of n-type SWNT on p-type substrate to create high-density p-n heterojunctions between nanotubes and silicon substrate to favor charge separation and extract electrons and holes. The high aspect ratios and large surface area of nanotubes can be beneficial to exciton dissociation and charge carrier transport thus improving the power conversion efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593.Google Scholar
2 Hagen, A.; Hertel, T. Nano Lett. Nano Lett. 2003, 3, 383.Google Scholar
3 Pedersen, T. G. Phys. Rev. B 2003, 67, 073401.Google Scholar
4 Odom, T. W. O.; Huang, J. L.; Kim, P.; Lieber, C. M. Nature 1998, 391, 62.Google Scholar
5 Fuhrer, M. S.; Kim, B. M.; Dulrkop, T.; Brintlinger, T. Nano Lett. 2002, 2, 755.Google Scholar
6 Freitag, M.; Perebeinos, V.; Chen, J.; Stein, A.; Tsang, J. C.; Misewich, J. A.; Martel, R.; Avouris, P. Nano Lett. 4, 1063 (2004).Google Scholar
7 Lee, J. U. Appl. Phys. Lett. 2005, 87, 073101.Google Scholar
8 Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. Nat. Nanotechnol. 2007, 2, 230236.Google Scholar
9 Bradley, K.; Gabriel, J.C.P.; Grüner, G. Nano Lett. 2003, 3, 1353.Google Scholar
10 Wei, J.; Jia, Y.; Shu, Q.; Gu, Z.; Wang, K.; Zhuang, D.; Zhang, G.; Wang, Z.; Luo, J.; Cao, A.; Wu, D. Nano Lett. 2007, 7(8), 23172321.Google Scholar
11 Kim, H.-S.; Kim, B.-K., Kim, J.-J.; Lee, J.-O.; Park, N. Appl. Phys. Lett. 2007, 91, 153113.Google Scholar
12 Krstic, V.; Rikken, G. L. J. A.; Bernier, P.; Roth, S. and Glerup, M. Europhys. Lett. 2007, 77, 37001.Google Scholar
13 Alvarez, W. E.; Pompeo, F.; Herrera, J. E.; Balzano, L.; Resasco, D. E. Chem. Mater. 2002, 14, 18531858.Google Scholar
14 Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. J. Am. Chem. Soc. 2003, 125, 1118611187.Google Scholar
15 Somani, S. P.; Somani, P. R.; Umeno, M.; Flahaut, E. Appl. Phys. Lett. 2006, 89, 223505.Google Scholar
16 Pradhan, B., Batabyal, S. K., Pal, A. J. Appl. Phys. Lett. 2006, 88, 093106093108.Google Scholar
17 Wei, J.; Jia, Y.; Shu, Q.; Gu, Z.; Wang, K.; Zhuang, D.; Zhang, G.; Wang, Z.; Luo, J.; Cao, A; Wu, D. Nano Letters 2007, 7(8), 23172321.Google Scholar
18 Shimada, T.; Sugai, T.; Ohno, Y.; Kishimoto, S.; Mizutani, T.; Yoshida, H.; Okazaki, T.; Shinohara, H. Appl. Phys. Lett. 2004, 84, 24122414.Google Scholar
19 Pasquier, A. D.; Unalan, H. E.; Kanwal, A.; Miller, S.; Chhowalla, M. Appl. Phys. Lett. 2005, 87, 203511.Google Scholar
20 Parekh, B. B.; Fanchini, G.; Eda, G.; Chhowalla, M. Appl. Phys. Lett. 2007, 90, 121913.Google Scholar
21 Coutts, T. J.; Ward, J. S.; Young, D. L.; Emery, K. A.; Gessert, T. A.; Noufi, R. Prog. Photovoltaics 2003, 11, 359.Google Scholar
22 Shim, M.; Javey, A.; Kam, N.; Dai, H. J. Am. Chem. Soc. 2001, 123(46), 1151211513.Google Scholar
23 Riben, A. R; Feucht, D. L. Solid-State Electron. 1966, 9, 1055.Google Scholar
24 Zeidenbergs, G.; Anderson, R. L. Solid-State Electron. 1967, 10, 113.Google Scholar
25 Anderson, R. L. Solid-State Electron. 1962, 5, 341.Google Scholar
26 Chen, R. J.; Franklin, N. R.; Kong, J.; Cao, J.; Tombler, T. W.; Zhang, Y.; Dai, H. Appl. Phys. Lett. 2001, 79, 2258.Google Scholar
27 Li, Z. R.; Saini, V.; Dervishi, E.; Kunets, V. P.; Zhang, J. H.; Xu, Y.; Biris, R. S.; Salamo, G.J.; Biris, A. S. Appl. Phys. Lett. 2010, 96, 033110 Google Scholar