Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T15:18:32.003Z Has data issue: false hasContentIssue false

Photophysics of High Concentration Systems at a Solution / Solid Interface: An Evanescentwave Study

Published online by Cambridge University Press:  10 February 2011

J.A. Elliott
Affiliation:
Department of Chemistry, Imperial College, London SW7 2AY, UK, [email protected]
G. Rumbles
Affiliation:
Department of Chemistry, Imperial College, London SW7 2AY, UK, [email protected]
A.J. De Mello
Affiliation:
Department of Chemistry, Imperial College, London SW7 2AY, UK, [email protected]
H.L. Anderson
Affiliation:
The Dyson Perrins Laboratory, University of Oxford, Oxford OX1 3QY.
Get access

Abstract

For many species the study of photophysical behaviour by fluorescence spectroscopy has been confined to low concentration as a result of the influence of the inner filter effect. In this paper we report how the total internal reflection technique of evanescent wavefluorescence spectroscopy (EWIFS) allows both the collection of distortion free steady-state fluorescence emission spectra and quantitative analysis of such species, in ‘bulk’ solution environment, to significantly higher concentration than can be achieved with a conventional ( right-angle ) geometry. A study of two species, the laser dye rhodamine 101 and anovel meso-substituted zinc prophyrin is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dhami, S., De Mello, A. J., Rumbles, G., Bishop, S.M., Phillips, D. and Beeby, A., Photochem Photobiol. 61 (4), 341 (1995)Google Scholar
2. Gill, James E., Appl. Spectrosc. 24(6), 588 (1970).Google Scholar
3. Christmann, D.R., Crouch, S.R., Holland, J.F. and Timnick, Andrew, Anal. Chem 52, 291 (1980).Google Scholar
4. Penakofer, A. and Leupacher, W., J. Luminescence, 37, 61 (1987)Google Scholar
5. Hammond, P.R., J. Chem. Phys 70(8), 3884 (1979)Google Scholar
6. Lopéz Arbeloa, I., J Photochem. 14, 97 (1980).Google Scholar
7. Lopéz Arbeloa, F., Ruiz Ojeda, P. and Lopéz Arbeloa, I., J. Photochem and Photobiol. A 45, 313 (1988).Google Scholar
8. Holland, John F., Teets, Richard E., Kelly, Partick M. and Timnick, Andrew, Anal. Chem. 49 (6), 706 (1977).Google Scholar
9. Christmann, D.R., Crouch, S.R. and Timnick, Andrew, Anal. Chem. 53, 276 (1981)Google Scholar
10. Lutz, Hans-Peter and Luisi, Pier Luigi, Helv. Chim. Act. 66(7), 1929 (1983)Google Scholar
11. Kubista, Mikael, Sjöback, Robert, Eriksson, Svante and Albinsson, Bo, Analyst, 119, 417 (1994).Google Scholar
12. Konstantinov, Konstantin B., Dhurjati, Prasad, Van Dyk, Tina, Majarian, William and LaRossa, Robert, Biotechnology and Bioengineering, 42, 1190 (1993).Google Scholar
13. De Mello, A. J., Total Internal Reflection Spectroscopy in Surface Analytical Techniques for Probing Biomaterial Surfaces, edited by Davies, J. (CRC Press, 1996), p. 1.Google Scholar
14. Axelrod, Daniel, Hellen, Edward H. and Fulbright, Robert M, Topics in Fluorescence Spectroscopy: Volume 3 - Biochemical Applications, edited Lakowicz, Joseph R (Plenum Press, 1992), p.289.Google Scholar
15. Rumbles, G., Bloor, D, Brown, A. J., DeMello, A. J., Crystall, B., Phillips, D. and Smith, T.A., Microchemistry: Spectroscopy and Chemistry in Small Domains, edited Masuhara, H (Elsevier Science, 1994), p.269.Google Scholar
16. Toriumi, M. and Masuhara, H, Spectrochimica Acta Rev. 14 (5), 353 (1991).Google Scholar
17. Toriumi, M., Yanagimachi, M. and Masuhara, H., Appl. Opt. 31 (30), 6376 (1992).Google Scholar
18. Clark, J. L. and Rumbles, G., Phys. Rev. Letts 76(12), 2037 (1996).Google Scholar
19. Anderson, H. L.. Inorg. Chem. 33, 972 (1994).Google Scholar
20. De Mello, A. J., PhD thesis, University of London, 1995.Google Scholar