Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T07:05:01.970Z Has data issue: false hasContentIssue false

Phase Transition and Dielectric Tunability of Chemical Solution Deposited (Pb0.35Sr0.65)(Zr0.5Ti0.5)O3 Thin Films on Pt/ZrO2/SiO2/Si Substrates

Published online by Cambridge University Press:  01 February 2011

Naba K Karan
Affiliation:
[email protected], University of Puerto Rico, Department of Physics, PO Box 23343, San Juan, 00931, Puerto Rico, 787 751 4210, 787 764 2571
Marilin Perez
Affiliation:
[email protected], University of Puerto Rico, Department of Physics and Institute for Functional Nanomaterials, PO Box 23343, San Juan, 00931, Puerto Rico
Jose Saavedra
Affiliation:
[email protected], University of Puerto Rico, Department of Physics and Institute for Functional Nanomaterials, PO Box 23343, San Juan, 00931, Puerto Rico
Dillip K Pradhan
Affiliation:
[email protected], University of Puerto Rico, Department of Physics and Institute for Functional Nanomaterials, PO Box 23343, San Juan, 00931, Puerto Rico
Reji Thomas
Affiliation:
[email protected], University of Puerto Rico, Department of Physics and Institute for Functional Nanomaterials, PO Box 23343, San Juan, 00931, Puerto Rico
Ram S Katiyar
Affiliation:
[email protected], University of Puerto Rico, Department of Physics and Institute for Functional Nanomaterials, PO Box 23343, San Juan, 00931, Puerto Rico
Get access

Abstract

(Pb0.35Sr0.65)(Zr0.5Ti0.5)O3 thin films were grown on Pt/ZrO2/SiO2/Si substrates by chemical solution deposition. As-deposited (pyrolysed at 500°C) films were amorphous and single phase films were obtained at temperature as low as 550°C with a 30 nm SrTiO3 seed layer. Dielectric constant and loss tangent at room temperature were 210 and 0.022, respectively at 100 kHz for the film annealed at 700°C. Frequency dispersion of the dielectric properties was low. The phase transition temperature (ferroelectric to paraelectric) was well below the room temperature and was around 220 K. The room temperature tunability and the k-factor at 500 kV/cm was around 45% and 16, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Carroll, K. R., Pond, J. M., Chrisey, D. B., Horwitz, J. S., Leuchtner, R. E., and Grabowski, K. S., Appl. Phys. Lett. 62, 1845 (1993).Google Scholar
2 Changa, W., Gilmore, C. M., Kim, W-J., Pond, J. M., Kirchoefer, S. W., Qadri, S. B., Chirsey, D. B., and Horwitz, J.S., J. Appl. Phy. 87, 3044 (2000).Google Scholar
3 Xu, J., Menesklou, W., Ivers-Tiffee, E., J. Eu. Ceram. Soc. 24, 1735 (2004).Google Scholar
4 Shao, Q-Y., Li, A-D., Xia, Y-D., Wu, D., Liu, Z-G. and Ming, N.B., J. Appl. Phys. 100, 036102 (2006).Google Scholar
5 Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N. Y., Stephenson, G. B., Stolitchnov, I., Taganstev, A. K., Taylor, D. V., Yamada, T., Streiffer, S., J. App. Phy., 100, 051606 (2006).Google Scholar
6 Mueller, C.H., Romanofsky, R.R., and Miranda, F.A., IEEE Potentials 20, 36 (2001).Google Scholar
7 Majumder, S.B., Jain, M., Martinez, A., Kuels, F.W. Van, Mirada, F. A. and Katiyar, R.S., J. Appl. Phys. 90, 896 (2001)Google Scholar
8 Gevorgian, S.S. and Kollberg, E.L., IEEE Trans. Microwave Theory Tech. 49, 2117 (2001).Google Scholar
9 Korn, D.S. and Wu, H.-D., Integrated Ferroelectrics 24, 215 (1999).Google Scholar
10 Chang, W., Kirchoefer, S. W., Bellotti, J.A., Pond, J.M., Schlom, D.G. and Haeni, J.H., Revista Mexicana de Fisica, 50, 501 (2004).Google Scholar
11 Jain, M., Majumder, S. B., Katiyar, R. S., Mirada, F. A. and Kuels, F.W. Van, Appl. Phys. Lett. 82, 1911 (2003).Google Scholar
12 Wang, Y., Shao, Q.Y. and Liu, J.-M., Appl. Phys. Lett. 88, 122902 (2006).Google Scholar
13 Jain, M., Katiyar, R.S., Bhalla, A.S., Miranda, F.A., Kuels, F.W. Van, Appl. Phys. Lett. 85, 275 (2004).Google Scholar
14 Thomas, R., Mochizuki, S., Mihara, T., and Ishida, T., Thin Solid Films 413, 65 (2002).Google Scholar
15 Thomas, R., Dube, D. C., Kamalasanan, M. N., Chandra, S. and Bhalla, A. S., J. Appl. Phys. 82, 4484 (1997).Google Scholar
16 Costa, C.E., Pontes, F.M., Souza, A.G., Leite, E.R., Pizani, P.S., and Longo, E., Appl. Phy. A: Mater. Sci. Process, 79, 593 (2004).Google Scholar
17 Wu, T.B., Wu, C.M., and Chen, M.L., Appl. Phy. Lett. 69, 2659 (1996).Google Scholar
18 Thomas, R., Mochizuki, S., Mihara, T., and Ishida, T., Thin Solid Films, 443, 14 (2003).Google Scholar
19 Thomas, R., Mochizuki, S., Mihara, T., and Ishida, T., Mat. Res. Soc. Symp. Proc. 718 D10.5.1 (2002).Google Scholar
20 Zhu, D., Li, Q., Lai, T., Mo, D., Xu, Y., and Mackenzie, J.D., Thin Solid Films 313–314, 210 (1998).Google Scholar
21 Tohge, N., Takahashi, S., and Minami, T., J. Am. Ceram. Soc., 74, 67 (1991).Google Scholar
22 Thomas, R., Mochizuki, S., Mihara, T. and Ishida, T., Mat. Sci. and Engg.B, 95, 36 (2002).Google Scholar
23 Thomas, R., Milanov, A., Bhakta, R., Patil, U., Winter, M., Ehrhart, P., Waser, R. and Devi, A., Chem. Vap. Deposition, 12, 195 (2006).Google Scholar
24 Jain, M., Karan, N. K., Yoon, J., Wang, H., Usov, I., Katiyar, R. S., Bhalla, A. S. and Jia, Q. X., Appl. Phys. Lett, 91, 072908 (2007).Google Scholar