Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T09:52:32.176Z Has data issue: false hasContentIssue false

Pendeo-Epitaxial Growth and Characterization of GaN and Related Materials on 6H-SiC(0001) and Si(111) Substrates

Published online by Cambridge University Press:  03 September 2012

Robert F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695;
T. Gehrke
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695;
K.J. Linthicum
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695;
T. S. Zheleva
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695;
P. Rajagopal
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695;
C. A. Zorman
Affiliation:
Department of Electrical and Computer Engineering, Case Western Reserve University, Cleveland, OH 44106
M. Mehregany
Affiliation:
Department of Electrical and Computer Engineering, Case Western Reserve University, Cleveland, OH 44106
Get access

Abstract

Discrete and coalesced monocrystalline GaN and AlxGa1−xN layers grown via Pendeoepitaxy (PE) [1] originated from side walls of GaN seed structures containing SiNx top masks have been grown via organometallic vapor phase deposition on GaN/AlN/6HSiC(0001) and GaN(0001)/AlN(0001)/3C-SiC(111)/Si(111) substrates. Scanning and transmission electron microscopies were used to evaluate the external microstructures and the distribution of dislocations, respectively. The dislocation densities in the PE grown films was reduced by at least five orders of magnitude relative to the initial GaN seed layers. Tilting in the coalesced GaN epilayers was observed via X-ray diffraction. A tilt of 0.2° was confined to areas of mask overgrowth; however, no tilting was observed in the material suspended above the SiC substrate. The strong, low-temperature PL band-edge peak at 3.45 eV with a FWHM of 17 meV was comparable to that observed in PE GaN films grown on 6H-SiC(0001). The band-edge in the GaN grown on AlN(0001)/SiC(111)Si(111) substrates was shifted to a lower energy by 10 meV, indicative of a greater tensile stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Trademark of Nitronex Corporation, Raleigh, NC 27606Google Scholar
2. Kapolnek, D. Keller, S., Vetury, R., Underwood, R., Kozodoy, P., Denbaars, S., and Mishra, U., Appl. Phys. Lett. 71, 1204 (1997)Google Scholar
3. Kato, Y., Kitamura, S., Hiramatsu, K., and Sawaki, N., J. Cryst. Growth, 144, 133 (1994)Google Scholar
4. Nam, O., Bremser, M., Ward, B., Nemanich, R., and Davis, R., Mat.Res. Soc. Symp. Proc., 449, 107 (1997)Google Scholar
5. Nam, O., Bremser, M., Ward, B., Nemanich, R., and Davis, R., Jpn.J. Appl. Phys., Part 1 36, L532 (1997).Google Scholar
6. , Sakai, Sunakawa, H., and Usui, A., Appl. Phys. Lett., 73, 481 (1998)Google Scholar
7. Marchand, H., Wu, X., Ibbetson, J., Fini, P., Kozodoy, P., Keller, S., Speck, J., Denbaars, S., and Mishra, U., Appl. Phys. Lett., 73, 747 (1998)Google Scholar
8. Zheleva, T., Nam, O., Bremser, M., and Davis, R., Appl. Phys. Lett., 71, 2472 (1997)Google Scholar
9. Nam, O., Zheleva, T., Bremser, M., and Davis, R., Appl. Phys. Lett., 71, 2638 (1997)Google Scholar
10. Zhong, H., Johnson, M., McNulty, T., Brown, J., J. Cook Jr., Schetzina, J., Materials Internet Journal, Nitride Semiconductor Research, 3, 6, (1998).Google Scholar
11. Nakamura, S., M.Senoh, Nagahama, S., Iwasa, N., Yamanda, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Proc. of the 2nd Int. Conf. On Nitride Semicond., Tokushima, Japan, October, 1997.Google Scholar
12. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamanda, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Appl. Phys. Lett., 72, 211 (1998)Google Scholar
13. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamanda, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Jpn. J. Appl. Phys., Part 2, 37 (1998), p. L309.Google Scholar
14. Zheleva, T., Smith, S., Thomson, D., Linthicum, K., Gerhke, T., Rajagopal, P., Davis, R., J. Electron. Matls. 28, L5 (1999)Google Scholar
15. Linthicum, K. J., Gehrke, T., Thomson, D., Carlson, E., Rajagopal, P., Smith, T., Davis, R., Appl. Phys Lett. 75, 196 (1999)Google Scholar
16. Gehrke, T., Linthicum, K. J., Thomson, D.B., Rajagopal, P., Batchelor, A. D. and Davis, R. F., MRS Internet J. Nitride Semicond. Res. 4S1, G3.2 (1999).Google Scholar
17. Linthicum, K. J., Gehrke, T., Thomson, D.B., Tracy, K. M., Carlson, E. P., Smith, T. P., Zheleva, T. S., Zorman, C. A., Mechregany, M. and Davis, R. F., MRS Internet J. Nitride Semicond. Res. 4S1, G4.9 (1999).Google Scholar
18. Thomson, D.B., Gehrke, T., Linthicum, K. J., Rajagopal, P., Hartlieb, P., Zheleva, T. S. and Davis, R. F., MRS Internet J. Nitride Semicond. Res. 4S1, G3.37 (1999).Google Scholar
19. Zheleva, T. S., Thomson, D.B., Smith, S., Rajagopal, P., Linthicum, K. J., Gehrke, T., and Davis, R. F., MRS Internet J. Nitride Semicond. Res. 4S1, G3.36 (1999).Google Scholar
20. Weeks, T., Bremser, M., Ailey, K., Carlson, E., Perry, W., and Davis, R., Appl. Phys. Lett., 67, 401 (1995)Google Scholar
21. Zorman, C. A., Fleischman, A. J., Dawa, A. S., Mehregany, M., Jacob, C., Nishino, S. and Pirouz, P., J. Appl. Phys. 78, 5136 (1995)Google Scholar
22. Gehrke, T., Linthicum, K.J., Rajagopal, P., Preble, E.A., Carlson, E.P., Robin, B.M., Davis, R.F., Int. Conf. on SiC and Related Materials (ICSCRM), Raleigh, NC, paper #269 (1999).Google Scholar