Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:38:14.217Z Has data issue: false hasContentIssue false

Organometallic Synthesis and Spectroscopic Characterization of Manganese Doped CdSe Nanocrystals

Published online by Cambridge University Press:  21 March 2011

Frederic V. Mikulec
Affiliation:
Department of Chemistry; Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139
Masaru Kuno
Affiliation:
Department of Chemistry; Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139
Marina Bennati
Affiliation:
Center for Magnetic Resonance, Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139
Dennis A. Hall
Affiliation:
Department of Chemistry; Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139 Center for Magnetic Resonance, Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139
Robert G. Griffin
Affiliation:
Department of Chemistry; Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139 Center for Magnetic Resonance, Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139
Moungi G. Bawendi
Affiliation:
Department of Chemistry; Francis Bitter Magnet Laboratory; Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

For CdSe quantum dots (QDs) produced via high temperature pyrolysis in trioctylphosphine oxide (TOPO), a MnSe precursor such as Mn2(μ-SeMe)2(CO)8appears to be necessary to successfully incorporate low levels of Mn. A simple etching experiment and electron paramagnetic resonance (EPR) measurements reveal that most of the dopant atoms reside in the surface layers of the inorganic lattice. The dopant dramatically affects 113Cd solid state NMR spectra; the observed paramagnetic shift and decreased longitudinal relaxation time reproduce bulk material behavior. Paramagnetic atoms in QDs generate large effective magnetic fields, which implies that magneto-optical experiments can be performed simply by doping. Results from fluorescence line narrowing (FLN) studies on Mn doped CdSe QDs mirror previous findings on undoped QDs in an external magnetic field. Experimental fitting of photoluminescence excitation (PLE) spectra of doped QDs reveals that the effective absorption lineshape contains a new feature which is believed to be a previously unobserved – but theoretically predicted – optically dark fine structure state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Furdyna, J. K. J. Appl. Phys. 1988, 64, R29–R64.Google Scholar
2. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 1322613239.Google Scholar
3. (a) Wang, Y.; Herron, N.; Moller, K.; Bein, T. Solid State Commun. 1991, 77, 3338. (b) Dhingra, S.; Kim, K.-W.; Kanatzidis, M. G. Mat. Res. Soc. Symp. Proc. 1991, 204, 163-168. (c) Kim, K.-W.; Cowen, J. A.; Dhingra, S.; Kanatzidis, M. G. Mat. Res. Soc. Symp. Proc. 1992, 272, 27-33. (d) Yanata, K.; Suzuki, K.; Oka, Y. J. Appl. Phys. 1993, 73, 4595-4598. (e) Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Phys. Rev. Lett. 1994, 72, 416-419. (f) Yanata, K.; Oka, Y. Jpn. J. Appl. Phys. 1995, Suppl 34-1, 164-166. (g) Bandaranayake, R. J.; Smith, M.; Lin, J. Y.; Jiang, H. X.; Sorensen, C. M. IEEE Trans. Magnetics 1994, 30, 4930-4932. (h) Sooklal, K.; Cullum, B. S.; Angel, S. M.; Murphy, C. J. J. Phys. Chem. 1996, 100, 45514555. (i) Levy, L.; Hochepied, J. F.; Pileni, M. P. J. Phys. Chem. 1996, 100, 18322-18326. (j) Counio, G.; Esnouf, S.; Gacoin, T.; Boilot, J.-P. J. Phys. Chem. 1996, 100, 20021-20026. (k) Levy, L.; Feltin, N.; Ingert, D.; Pileni, M. P. J. Phys. Chem. B 1997, 101, 9153-9160.Google Scholar
4. Ladizhansky, V.; Hodes, G.; Vega, S. J. Phys. Chem. B 1998, 102, 85058509.Google Scholar
5. Coleman, A. P.; Dickson, R. S.; Deacon, G. B.; Fallon, G. D.; Ke, M.; McGregor, K.; West, B. O. Polyhedron 1994, 13, 12771290.Google Scholar
6. Welcman, N.; Rot, I. J. Chem. Soc. 1965, 75157516.Google Scholar
7. (a) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 87068715. (b) Kuno, M.; Lee, J. K.; Dabbousi, B. O.; Mikulec, F. V.; Bawendi, M. G. J. Chem. Phys. 1997, 106, 9869-9882.Google Scholar
8. Ludwig, G. W.; Woodbury, H. H. in Solid State Physics, vol. 13, edited by Seitz, F.; Turnbull, D.; Academic Press: New York, 1962; p 297.Google Scholar
9. Kennedy, T. A.; Glasser, E. R.; Klein, P. B.; Bhargava, R. N. Phys. Rev. B 1995, 52, R14356–R14359.Google Scholar
10. Gavish, M.; Vega, S.; Zamir, D. Phys. Rev. B 1993, 48, 21912199.Google Scholar
11. Nirmal, M.; Norris, D. J.; Kuno, M.; Bawendi, M. G.; Efros, A. L.; Rosen, M. Phys. Rev. Lett. 1995, 75, 37283731.Google Scholar
12. (a) Norris, D. J.; Efros, A. L.; Rosen, M.; Bawendi, M. G. Phys. Rev. B 1996, 53, 1634716354. (b) Kuno, M. Ph.D. Thesis, Massachusetts Institute of Technology, 1998, pp 229-246.Google Scholar
13. Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Nature 1996, 383, 802804.Google Scholar
14. Empedocles, S. A.; Norris, D. J.; Bawendi, M. G. Phys. Rev. Lett. 1996, 77, 38733876.Google Scholar
15. Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Phys. Rev. B 1996, 54, 48434856.Google Scholar