Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T23:19:40.722Z Has data issue: false hasContentIssue false

Optical Properties of Zinc Oxide Quantum Dots Embedded Films by Metal Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

S. T. Tan
Affiliation:
[email protected], Nanyang Technological University, Ion Beam Processing Lab,, S1-B3a-01,, Nanyang Avenue., Singapore, Singapore, 639798, Singapore
X. W. Sun*
Affiliation:
[email protected], Nanyang Technological University, Singapore
X. H. Zhang
Affiliation:
[email protected], Institute of Materials Research and Engineering, Singapore
B. J. Chen
Affiliation:
[email protected], Nanyang Technological University, Singapore
S. J. Chua
Affiliation:
[email protected], Institute of Materials Research and Engineering, Singapore
*
* Author to whom correspondence should be addressed; electronic mail: [email protected]
Get access

Abstract

Zinc oxide (ZnO) quantum dots (QDs) embedded films were fabricated on silicon substrates by metal organic chemical vapor deposition at 350°C. The QDs can be obtained in a matrix of amorphous ZnO films by introducing a large amount of precursors. The size of the QDs ranged from 3 to 12 nm, which was estimated by high-resolution transmission electron microscopy. The photoluminescence measured at 80 K showed that the emission of QDs embedded film ranged from 3.0 to 3.6 eV. The broad near-band-edge emission is due to the quantum confinement effect of the QDs. The quantum confinement effect of the QDs disappears after the post-growth annealing due to the ripening of QDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sun, X. W. and Kwok, H. S., J. Appl. Phys. 86, 408 (1999).Google Scholar
2. Robert F., Service, Science 276, 895 (1997).Google Scholar
3. Sun, X. W., Yu, S. F., Xu, C. X., Yuen, C., Chen, B. J., and Li, S., Jpn. J. Appl. Phys. Part II 42, L1229 (2003).Google Scholar
4. Huang, M. H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science 292, 1897 (2001).Google Scholar
5. Zhang, B. P., Binh, N. T., Segawa, Y., Kashiwaba, Y., and Haga, K., Appl. Phys. Lett. 84, 586 (2004).Google Scholar
6. Xu, C. X. and Sun, X. W., Appl. Phys. Lett. 83, 3806 (2003).Google Scholar
7. Wang, Z. L., Materials Today 7, 26 (2004).Google Scholar
8. Xu, C. X., Sun, X. W., Dong, Z. L., and Yu, M. B., Appl. Phys. Lett. 85, 3878 (2004).Google Scholar
9. Kim, S. W., Fujita, S., and Fujita, S., Appl. Phys. Lett. 81, 5036 (2002).Google Scholar
10. Kim, K. K., Koguchi, N., Ok, Y. W., Seong, T. Y., and Park, S. J., Appl. Phys. Lett. 84, 3810 (2004).Google Scholar
11. Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982).Google Scholar
12. Tan, S. T., Sun, X. W., Zhang, X. H., Chen, B. J., Chua, S. J., Yong, Anna, Dong, Z. L., and Hu, X., J. Cryst. Growth, in press.Google Scholar
13. Tan, S. T., Chen, B. J., Sun, X. W., Fan, W. J., Kwok, H. S., Zhang, X. H., and Chua, S. J., J. Appl. Phys. 98, 013505 (2005).Google Scholar
14. Look, D. C., Reynolds, D. C., Litton, C. W., Jones, R. L., Eason, D. B., and Cantwell, G., Appl. Phys. Lett. 81, 1830 (2002).Google Scholar
15. Ashrafi, A. B. M. A., Suemune, I., Kumano, H., Tanaka, S., Jpn. J. Appl. Phys. 41, L1281 (2002).Google Scholar
16. Zhang, Y., Lin, B., Sun, X., and Fu, Z., Appl. Phys. Lett. 86, 131910 (2005).Google Scholar
17. Kayanuma, Y., Phys. Rev. B 38, 9797 (1988).Google Scholar
18. Beni, G., and Rice, T. M., Phys. Rev. B 18, 768 (1978).Google Scholar
19. Fan, W. J., Xia, J. B., Agus, P. A., Tan, S. T., Yu, S. F., and Sun, X. W., J. Appl. Phys. 99, 013702 (2006).Google Scholar
20. Tan, S. T., Chen, B. J., Sun, X. W., Hu, X., Zhang, X. H., and Chua, S. J., J. Crystal Growth 281, 571 (2005).Google Scholar