Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T10:13:34.473Z Has data issue: false hasContentIssue false

Numerical Studies of Precipitate Coarsening Phenomena

Published online by Cambridge University Press:  26 February 2011

James P. Lavine
Affiliation:
Image Acquisition Products Division, Eastman Kodak Company, Rochester, NY 14650-2008
Gilbert A. Hawkins
Affiliation:
Image Acquisition Products Division, Eastman Kodak Company, Rochester, NY 14650-2008
Get access

Abstract

A three-dimensional Monte Carlo computer program is used to study the time-dependent coarsening of a precipitate population in a solid. The emphasis is on the influence of the escape rate of solute atoms from a precipitate on the coarsening behavior. Three models for the escape attempt frequency are compared. The time when coarsening is observed and the extent of coarsening depend on the model as does the percentage of solute precipitated in a given time. The qualitative results of the present calculations are compared with earlier findings.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Russell, K. C., Adv. Colloid Interface Sci. 13, 205 (1980).CrossRefGoogle Scholar
2. Voorhees, P. W., J. Statist. Phys. 38, 231 (1985).CrossRefGoogle Scholar
3. Martin, J. W. and Doherty, R. D., Stability of Microstructure in Metallic Systems (Cambridge University Press, Cambridge, 1976), ch. 4.Google Scholar
4. Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
5. Wagner, C., Z. Elektrochemie 65, 581 (1961).Google Scholar
6. Enomoto, Y., Kawasaki, K., Tokuyama, M., Acta Metall. 35, 915 (1987).CrossRefGoogle Scholar
7. Kampmann, R., Eckerlebe, H., Wagner, R., in Phase Transitions in Condensed Systems - Experiments and Theory. edited by Cargill, G. S. III, Spaepen, F., and Tu, K.-N. (Mater. Res. Soc. Proc. 57, Pittsburgh, PA 1987) pp. 525542.Google Scholar
8. Weins, J. J. and Cahn, J. W., in Sintering and Related Phenomena, edited by Kuczynski, G. C. (Plenum Press, New York, 1973), pp. 151163.CrossRefGoogle Scholar
9. Wirtz, G. P. and Fine, M. E., J. Amer. Ceram. Soc. 51, 402 (1968).CrossRefGoogle Scholar
10. Lavine, J. P. and Hawkins, G. A., in Atomic Scale Calculations in Materials Science, edited by Tersoff, J., Vanderbilt, D., and Vitek, V. (Mater. Res. Soc. Proc. 141, Pittsburgh, PA 1989) pp. 267272.Google Scholar
11. Watkins, G. D., Corbett, J. W., and McDonald, R. S., J. Appl. Phys. 53, 7097 (1982).CrossRefGoogle Scholar
12. Turnbull, D. and Fisher, J. C., J. Chem. Phys. 171, 71 (1949).CrossRefGoogle Scholar
13. Katz, J. L. and Wiedersich, H., J. Colloid Interface Sci. 1, 351 (1977).CrossRefGoogle Scholar
14. Katz, J. L. and Spaepen, F., Phil. Mag. B 37, 137 (1978).CrossRefGoogle Scholar