Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T10:16:29.474Z Has data issue: false hasContentIssue false

Novel Structure of Fullerenes and Endohedral Fullerenes

Published online by Cambridge University Press:  10 February 2011

Chun-Ru Wang
Affiliation:
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Chun-Li Bai
Affiliation:
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Hisanori Shinohara
Affiliation:
Department of Chemistry, Nagoya University, Nagoya 464-8602, Japan
Get access

Abstract

By using Krätschmer-Huffman synthesis and HPLC separation method we have isolated a series of novel fullerenes and endohedral fullerenes. Various spectroscopic techniques, e.g., MS, NMR, UV-vis-NIR, TEM, X-ray diffraction spectrometry etc., were adopted to characterize the isolated fullerenes. Several fullerenes were revealed to hold novel structures and electronic properties. For examples, C80(D5d) was isolated and characterized to have an ellipsoidal structure which is in fact one of the shortest SW-nanotubes; The isolation of Sc2@C66 breaks the well-known isolated-pentagon-rule (IPR) for the first time, which shows that the unconventional fullerenes may be dramatically stabilized through encaging metal atoms; Sc2C2@C84 is a novel molecular endohedral fullerene in which the Sc2C2 cluster rotates rapidly along the main C2 axis of C84(D2d). This fullerene is predicted to be a molecular magnet and may be used as nano-switcher in electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kroto, H.W., Heath, J.R., O'Brien, S.C., Smalley, R.F., Nature 318, 162(1985).Google Scholar
2. Klingeler, R., Kann, G., Wirth, I., Eisebitt, S., Bechthold, P.S., Neeb, M., Eberhardt, W., J. Chem. Phys. 115, 7215(2001).Google Scholar
3. Park, J., Pasupathy, A.N., Goldsmith, J.L. et al., Nature 417, 722 (2002)Google Scholar
4. Wudl, F., J. Mat. Chem. 12, 1959(2002).Google Scholar
5. Rosseinsky, M. J., Chem. Mater. 10, 2665(1998).Google Scholar
6. Bolskar, R.D., Benedetto, A.F., Husebo, L.O., Price, R.E., Jackson, E.F., Wallace, S., Wilson, L.J., Alford, J.M., J. Am. Chem. Soc. 125, 5471(2003).Google Scholar
7. Mikawa, M., Kato, H., Shinohara, H. et al., Biocon. Chem. 12, 510(2001).Google Scholar
8. Wang, C.R., Sugai, T., Kai, T., Shinohara, H. et al., Chem. Comm. 557 (2000)Google Scholar
9. Wang, C.R., Kai, T., Tomiyama, T., Yoshida, T., Kobayashi, Y., Nishibori, E., Takata, M., Sakata, M., Shinohara, H., Nature 408, 426(2000).Google Scholar
10. Stevenson, S., Rice, G., Glass, T., Harich, K., Cromer, F.,Jordan, M.R., Craft, J., Hadju, E., Bible, R., Dorn, H.C., Nature, 408, 427, (2000).Google Scholar
11. Wang, C.R., Kai, T., Shinohara, H. et al., Angew.Chem.-Int. Ed. 40, 397 (2001)Google Scholar
12. Curl, R.F., Angew. Chem. Int. Ed. 36, 1566 (1997)Google Scholar
13. Fowler, P.W. and Manolopoulos, D.E., An atlas of fullerenes, (Oxford, 1995).Google Scholar
14. Henrich, F. H., Michel, R.H., Fischer, A., Schneider, S. R., Gilb, S., Kappes, M.M., Fuchs, D., Bürk, M., Kobayashi, K. and Nagase, S., Angew. Chem. Int. Ed. Engl., 35, 1732 (1996)Google Scholar
15. Kobayashi, K., Nagase, S., Yoshida, M., Osawa, E., J. Am. Chem. Soc. 119, 12693(1997).Google Scholar
16. Dorn, H.C., et al., Fullerenes: recent advances in the chemistry and physics of fullerenes and related materials; (Kadish, K.M., Ruoff, R.S., eds., The Electrochemical Society Proceedings, Sans Diago) 8, 990(1998).Google Scholar
17. Shinohara, H., Rep. Prog. Phys. 63, 843(2000).Google Scholar
18. Olmstead, M.H., Bettencourt-Dias, A. de, Duchamp, J.C., Stevenson, S., Marciu, D., Dorn, H.C., Balch, A.L., Angew. Chem. Int. Ed. 40, 1223 (2001); S. Stevenson, G. Rice, T. Glass, H.C. Dorn et al., Nature 401, 55(1999).Google Scholar