Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T04:58:22.764Z Has data issue: false hasContentIssue false

Nonlinear Optical Polymers for Electrooptical Devices

Published online by Cambridge University Press:  25 February 2011

R. DeMartino
Affiliation:
Hoechst Celanese Research Division Robert L. Mitchell Technical Center 86 Morris Avenue Summit, New Jersey 07090
D. Haas
Affiliation:
Hoechst Celanese Research Division Robert L. Mitchell Technical Center 86 Morris Avenue Summit, New Jersey 07090
G. Khanarian
Affiliation:
Hoechst Celanese Research Division Robert L. Mitchell Technical Center 86 Morris Avenue Summit, New Jersey 07090
T. Leslie
Affiliation:
Hoechst Celanese Research Division Robert L. Mitchell Technical Center 86 Morris Avenue Summit, New Jersey 07090
H. T. Man
Affiliation:
Hoechst Celanese Research Division Robert L. Mitchell Technical Center 86 Morris Avenue Summit, New Jersey 07090
J. Riggs
Affiliation:
Hoechst Celanese Research Division Robert L. Mitchell Technical Center 86 Morris Avenue Summit, New Jersey 07090
M. Sansone
Affiliation:
Hoechst Celanese Research Division Robert L. Mitchell Technical Center 86 Morris Avenue Summit, New Jersey 07090
J. Stamatoff
Affiliation:
Hoechst Celanese Research Division Robert L. Mitchell Technical Center 86 Morris Avenue Summit, New Jersey 07090
C. Teng
Affiliation:
Hoechst Celanese Research Division Robert L. Mitchell Technical Center 86 Morris Avenue Summit, New Jersey 07090
H. Yoon
Affiliation:
Hoechst Celanese Research Division Robert L. Mitchell Technical Center 86 Morris Avenue Summit, New Jersey 07090
Get access

Abstract

Although organic crystals may be used to experimentally verify the large nonlinearities and short response times of organics, such crystals are not acceptable for device applications due to significant fabrication difficulties. Further, the bulk material nonlinearity is a function of molecular orientation and symmetry which may not be controlled during the crystallization process.

Nonlinear optical polymers have been synthesized at Hoechst Celanese for which the active NLO unit is attached to the polymer backbone as a pendant side chain. Control of orientation and symmetry of the unit is achieved by poling in an external electric field at elevated temperatures resulting in second order susceptibilities larger than inorganic crystals. The polymers have attractive secondary properties (i.e., optical transparency, high glass transition temperatures which are controlled by adjusting the side chain length and nature of the polymer backbone, low dielectric constants, and flat frequency respose). Further, single mode waveguides may be fabricated by spin coating. Deposition of electrodes on the waveguide permits application of an external field which changes the material's index of refraction due to the linear electrooptical effect. Thus, a host of electrooptical waveguide devices may be constructed which operate at low voltages and very high frequencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Optical Computing, Proc. SPIE, 4, 5, 6, Neff, J., Editor (1984).Google Scholar
2. “Organo-Optics: Non-Linear Optical Properties of Organic Small Molecules and Polymers”, Buckley, A., Choe, E. W., Riggs, J. P., Stuetz, D., Technical Proposal by the Celanese Research Company, submitted to DARPA, December 1983.Google Scholar
3. Lipscomb, G. F., Garito, A. F., Narang, R. S., J. Chem. Phys., 75, 1509 (1981).Google Scholar
4. Levine, B. F., Bethea, C. E., Thurmmond, C. D, Lynch, R. T., and Bernstein, J. L., J. Chem. Phys, 50, 2523 (1979).Google Scholar
5. Garito, A. F., Singer, K. D., and Teng, C. C., ACS Symposium Series No. 223, 1 (1983).Google Scholar
6. Principles of Optics, Born, M. and Wolf, E., Chap. VII, Pergamon Press, New York (1980).Google Scholar
7. Alferness, R. C., IEEE Trans MTT, 30, No. 8, 1121 (1982).CrossRefGoogle Scholar
8. Kwon, O. K., Pease, R. F. W., and Beasley, M. R., “Superconductors as Very High Speed System-Level Interconnects”, submitted to Electron Device Letters (1987).CrossRefGoogle Scholar
9. Buckley, A., Choe, E. W., DeMartino, R. N., Leslie, T. M., Nelson, G. V., Stamatoff, J. B., Stuetz, D., Yoon, H. N., ACS Symposium on Solid State Polymerization, 54, 502 (1986).Google Scholar
10. Stamatoff, J. B., Buckley, A., Calundann, G., Choe, E. W., DeMartino, R. N., Khanarian, G., Leslie, T. M., Nelson, G. V., Stuetz, D., Teng, C. C., Yoon, H. N., Proc. SPIE, 682, 85 (1986).Google Scholar
11. DeMartino, R. N., Choe, E. W., Khanarian, G., Haas, D., Leslie, T. M., Nelson, G. V., Stamatoff, J. B., Stuetz, D., Teng, C. C., Yoon, H. N., ACS Symposium, April 1987, Denver, CO, in press.Google Scholar
12. Leslie, T. M., DeMartino, R. N., Choe, E. W., Khanarian, G., Haas, D., Nelson, G. V., Stamatoff, J. B., Stuetz, D., Teng, C. C., Yoon, H. N.; Mol. Cryst. and Liquid Cryst., Special edition on the First International Conference on Liquid Crystal Polymers, in press, (1987).Google Scholar
13. Sawyer, K. D., Sohn, T. E., and Lalama, S. T., Appl. Phys. Lett., 49, 248 (1986).Google Scholar
14. Nelson, G. V. and Stamatoff, J. B., Ordered Polymer Contract Review, Oct. 28–31, 1986, Dayton, Ohio.Google Scholar
15. Riggs, J. P. and Stamatoff, J. B., DARPA/DSO Program Review, Feb. 10–13, 1987, Leesburg, Virginia. Google Scholar
16. Ye, L., Marks, T. J., Yang, J., Wong, G. K., “Synthesis of Molecular Arrays with Nonlinear Optical Properties – Second Harmonic Generation by Covalently Functionalized Glassy Polymers”, Macromolecules, in press, (1987).Google Scholar
17. Khanarian, G., Che, T. M., DeMartino, R. N., Haas, D., Leslie, T. M., Man, H. T., Sansone, M., Stamatoff, J. B., Teng, C. C., Yoon, H. N., Proc. SPIE, 824, in press (1987).Google Scholar
18. Khanarian, G., Thin Solid Films, 152, 265 (1987).Google Scholar
19. Khanarian, G., Artigliere, A., Keosian, R., Choe, E. W., DeMartino, R. N., Stuetz, D., Teng, C. C., Proc. SPIE, 682, 153 (1986).Google Scholar
20. Lytel, R., Lipscomb, G. F., Thackara, J. I., Proc. SPIE, 824, in press (1987).Google Scholar
21. Lalama, S. J. and Garito, A. F., Phys., Rev., A 20, 1179 (1979).Google Scholar
22. Garito, A. F., Teng, C. C., Wong, K. Y., Zamani-Khamini, O., Mol. Cryst. and Liquid Cryst., 106, 219 (1984.)Google Scholar