Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T07:04:31.007Z Has data issue: false hasContentIssue false

Neutron Detection Signatures at Zero Bias in Novel Semiconducting Boron Carbide/Pyridine Polymers

Published online by Cambridge University Press:  13 April 2015

Elena Echeverría
Affiliation:
Department of Physics and Astronomy, University of Nebraska-Lincoln, 855 North 16th Street, Lincoln, NE 68588-0299, U.S.A.
Robinson James
Affiliation:
Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, TX 76203, U.S.A.
Frank L. Pasquale
Affiliation:
Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, TX 76203, U.S.A.
Juan A. Colón Santana
Affiliation:
Department of Physics, Northern Illinois University, DeKalb, IL 60115, U.S.A.
M. Sky Driver
Affiliation:
Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, TX 76203, U.S.A.
A. Enders
Affiliation:
Department of Physics and Astronomy, University of Nebraska-Lincoln, 855 North 16th Street, Lincoln, NE 68588-0299, U.S.A.
Jeffry A. Kelber
Affiliation:
Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, TX 76203, U.S.A.
P.A. Dowben
Affiliation:
Department of Physics and Astronomy, University of Nebraska-Lincoln, 855 North 16th Street, Lincoln, NE 68588-0299, U.S.A.
Get access

Abstract

Novel and more conventional boron carbides were combined with n-type silicon to make heterojunction diodes, with neutron capture signal at zero applied bias. The boron carbides were based on the cross linking of closo-1,2-dicarbadodecaborane (ortho-carborane; 1,2-B10C2H12), and cross linking based on the combination of closo-1,2-dicarbadodecaborane (ortho-carborane; 1,2- B10C2H12) and pyridine. In the latter devices, pyridine concentration was varied; samples with a closo-1,2-dicarbadodecaborane (ortho-carborane; 1,2- B10C2H12) to pyridine ratio of 1:1 (BC:Py1) and 1:3 (BC:Py3). The result is a nonvolatile robust p-type semiconductor of boron carbide (B10C2Hx):(C5NHx)y. The I(V) curves for the resulting heterojunction diodes exhibit strong rectification where the normalized reverse bias leakage currents are largely unperturbed with increasing pyridine inclusion. The devices are largely gamma insensitive and yet neutron voltaic properties of these boron carbides is demonstrated. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the characteristic signatures of complete charge collection from boron neutron capture generated electron-hole pair production. These results, nonetheless, suggest that modifications to boron carbide may result in better neutron voltaic materials with linking groups chosen from family of aromatic compounds that stretch between borazine (B3N3H6) and benzene that point the way to a whole family of future studies that may ultimately lead to boron carbides better suited to low power and low flux neutron detection.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Caruso, A.N., J.Phys. Condens. Matter. 22 (2010) 132. doi: 10.1088/0953-8984/22/44/443201.CrossRefGoogle Scholar
Caruso, A.N., Billa, R.B., Balaz, S., Brand, J.I., Dowben, P.A., J.Phys.Condens. Matter. 16 (2004) L139L146. doi: 10.1088/0953-8984/16/10/L04.CrossRefGoogle Scholar
Robertson, B.W., Adenwalla, S., Harken, A., Welsch, P., Brand, J.I., Dowben, P.A., Claassen, J.P., Appl. Phys. Lett. 80 (2002) 36443646. doi: 10.1063/1.1477942.CrossRefGoogle Scholar
Robertson, B.W., Adenwalla, S., Harken, A., Welsch, P., Brand, J.I, Claassen, J.P., Boag, N.M., Dowben, P.A., Proc. SPIE 4785 (2002) 226233. doi: 10.1117/12.453923.CrossRefGoogle Scholar
Adenwalla, S., Billa, R., Brand, J.I., Day, E., Diaz, M.J., Harken, A., McMullen-Gunn, A., Padmanabhan, R., Robertson, B.W., Proc. SPIE 5199 (2004) 7074. doi: 10.1117/12.506646.CrossRefGoogle Scholar
Osberg, K., Schemm, N., Balkir, S., Brand, J.I., Hallbeck, M.S, Dowben, P.A., Hoffman, M.W., IEEE Sens. J. 6 (2006) 15311538. doi: 10.1109/JSEN.2006.883905.CrossRefGoogle Scholar
Osberg, K., Schemm, N., Balkir, S., Brand, J.I, Hallbeck, M.S., Dowben, P.A., IEEE Int. Symp. Circ. S (2006) 11791182. doi: 10.1109/ISCAS.2006.1692801.Google Scholar
Caruso, A.N., Dowben, P.A., Balkir, S., Schemm, N., Osberg, K., Fairchild, R.W., Flores, O.B., Balaz, S., Harken, A.D., Robertson, B.W., Brand, J.I., Mater. Sci. Eng. 135 (2006) 129133. doi: 10.1016/j.mseb.2006.08.049.CrossRefGoogle Scholar
Day, E., Diaz, M.J., Adenwalla, S., J. Phys. D: Appl. Phys. 39 (2006) 29202924. doi: 10.1088/0022 3727/39/14/007.CrossRefGoogle Scholar
Hong, N., Mullins, J., Foreman, K., Adenwalla, S., J. Phys. D: Appl. Phys. 43 (2010) 275101. doi: 10.1088/0022-3727/43/27/275101.CrossRefGoogle Scholar
Simeone, D., Mallet, C., Dubuisson, P., Baldinozzi, G., Gervais, C, Maquet, J., J. Nuclear Materials 277 (2000) 110. doi: 10.1016/S0022-3115(99)00149-X.CrossRefGoogle Scholar
Emin, D., Journal of Solid State Chemistry 179 (2006) 27912798. doi: 10.1016/j.jssc.2006.01.014.CrossRefGoogle Scholar
Carrard, M., Emin, D., and Zuppiroli, L., Phys. Rev. 51 (1995) 1127011274. doi: 10.1103/PhysRevB.51.11270.CrossRefGoogle Scholar
Caruso, A. N., Brand, J. I., Dowben, P.A., Boron carbide particle detectors, United States Patent 7,368,794, issued May 6, 2008.Google Scholar
Pasquale, F. L., Li, Y., Du, J.C., Kelber, J.A., J.Phys. Cond. Matter 25 (2013) 105801. doi: 10.1088/0953-8984/25/10/105801.CrossRefGoogle Scholar
Pasquale, F. L., James, R., Welch, R., Echeverria, E., Dowben, P. A., Kelber, J. A., ECS Transactions 53 (2013) 303310. doi: 10.1149/05301.0303ecst.CrossRefGoogle Scholar
Pasquale, F.L., Liu, J., Dowben, P.A., Kelber, J.A., Materials Chemistry And Physics 133 (2012) 901906. doi: 10.1016/j.matchemphys.2012.01.114.CrossRefGoogle Scholar
Valente, Frank A. and Zagor, Herbert Ivan, Phys. Rev. 69 (1946) 55. doi: 10.1103/PhysRev.69.55.CrossRefGoogle Scholar
Bartholomew, G. A. and Campion, P. J., Canadian Journal of Physics 35 (1957) 1347. doi: 10.1139/p57-147.CrossRefGoogle Scholar
Meissner, J., Schatz, H., Herndl, H., Wiescher, M., Beer, H., Käppler, F., Phys. Rev. C 53 (1996) 977. doi: 10.1103/PhysRevC.53.977.Google Scholar
Jurney, E. T., Starner, J. W., Lynn, J. E., Raman, S., Phys. Rev. C 56 (1997) 118. doi: 10.1103/PhysRevC.56.118.Google Scholar
Zagor, H. I., Valente, F. A., Physical Review 67 (1945) 133.CrossRefGoogle Scholar
James, R.; Pasquale, F.L., Kelber, J.A., Journal of Physics: Condensed Matter 25 (2013) 355004. doi:10.1088/0953-8984/25/35/355004.Google Scholar
Echeverria, E., Pasquale, F.L., Colón Santana, J.A., Zhang, L., James, R., Sokolov, A., Kelber, J.A., and Dowben, P.A., Mat. Lett. 110 (2013) 2023. doi: 10.1016/j.matlet.2013.08.009.CrossRefGoogle Scholar
Echeverría, E., James, R., Chiluwal, U., Pasquale, F. L., Colón Santana, J. A., Gapfizi, R., Tae, J.-D., Driver, M. S., Enders, A., Kelber, J. A. and Dowben, P.A., Applied Physics A (2014), in press; DOI 10.1007/s00339-014-8778-4.Google Scholar