Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T10:56:46.453Z Has data issue: false hasContentIssue false

Nanoscale Indentation of Polymer and Composite Particles by Atomic Force Microscopy

Published online by Cambridge University Press:  01 February 2011

Silvia Armini
Affiliation:
[email protected], IMEC/KULeuven, SPDT/AMPS/CMP, Kapeldreef, 75, Leuven, Belgium, 3001, Belgium, 0032-16-288617, 0032-16-281576
Ivan U. Vakarelski
Affiliation:
[email protected], Kyoto University-Katsura, Kyoto, 615-8510, Japan
Caroline M. Whelan
Affiliation:
[email protected], IMEC, SPDT/NANO, Leuven, 3001, Belgium
Karen Maex
Affiliation:
[email protected], KU Leuven, Leuven, 3001, Belgium
Ko Higashitani
Affiliation:
Ko Higashitani [[email protected]], Kyoto University-Katsura, Kyoto, 615-8510, Japan
Get access

Abstract

Atomic Force Microscopy (AFM) was employed to probe the mechanical properties of surface-charged polymethylmethacrylate (PMMA)-based terpolymer and a composite terpolymer core-silica shell nanosphere in air and water media. Since these materials exhibit enhanced mechanical properties, such as toughness and elasticity, and enhanced chemical stability, they are particularly interesting for potential applications in reducing defectivity during the process of Chemical Mechanical Planarization. The polymer particles were subjected to a thermal treatment aimed at improving their mechanical properties in terms of hardness (H) and elastic modulus (E). By analysis of force-displacement curves and on the basis of Hertz's theory of contact mechanics, Young's moduli were measured for the terpolymer compared with the composite that has expected mechanical property enhancement due to its silica shell. In air, E increases from 4.3 GPa to 6.6 GPa for the treated terpolymer compared with the respective value of 10.3 GPa measured for the composite. In water, E increases from 1.6 GPa to 4.5 GPa for the thermally treated terpolymer that is comparable with the respective value of 3.6 GPa measured for the composite. This observation suggests that as an alternative to the creation of polymer-silica composite nanoparticles for CMP, comparable mechanical properties can be achieved by a simple heat treatment step.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Steigerwald, J. M.; “A fundamental study of chemical-mechanical polishing of copper thin films” PhD thesis, Rensselaer Polytechnic Institute, Troy, NY, USA (1995).Google Scholar
2 Ramarajan, S.; Hariharaputhiran, M.; Her, Y. S.; Babu, S. V. Surface Engineering, 15, 4, 324 (1999).Google Scholar
3 Vanlandingham, M. R.; McKnight, S. H.; Palmese, G. R.; Ellings, J. R.; Huang, X.; Bogetti, T. A.; Eduljee, R. F.; Gillespie, J. W. J. Adhesion, 64 31 (1997).Google Scholar
4 Chizhik, S. A.; Huang, Z.; Gorbunov, V. V.; Myshkin, N. K.; Tsukruk, V. V. Langmuir, 14 2606 (1998).Google Scholar
5 Vakarelski, I. U.; Toritani, A.; Nakayama, M.; Higashitani, K. Langmuir 19 110 (2003).Google Scholar
6 Armini, S.; Whelan, C. M.; Smet, M.; Eslava, S.; Maex, K. submitted to Polymer.Google Scholar
7 Ananthapadmanabhan, K. P.; Mao, G. Z.; Goddard, E. D.; Tirrell, M. Colloids and Surfaces, 61 167 (1991).Google Scholar
8 Cleveland, J. P.; Manne, S.; Bocker, D.; Hansma, P. K. Rev. Sci. Instrum. 64 1 (1993).Google Scholar
9 Ducker, W. A.; Senden, T. J.; Pasheley, R. M. Langmuir, 8 1831 (1992).Google Scholar
10 Vakarelski, I. U.; Toritani, A.; Nakayama, M.; Higashitani, K. Langmuir, 17 4739 (2001).Google Scholar
11 Touhami, A.; Nysten, B.; Dufrêne, Y. F. Langmuir, 19 4539 (2003).Google Scholar
12 Tan, S.; Sherman, R. L.; Ford, W. T. Langmuir, 20 7015 (2004).Google Scholar
13 Hertz, H. J.; Reine Angew. Math. 92 156 (1882).Google Scholar
14 Sneddon, I. N. Int. J. Eng. Sci. 3 47 (1965).Google Scholar
15 Johnson, K. L. Contact Mechanics, Cambridge University Press, Cambridge (1985).Google Scholar
16 Maugis, D.; Pollock, H. M.; Acta metal. 32 1323 (1984).Google Scholar
17 Biggs, S.; Spinks, G. J. Adhesion Sci. Technol. 12, 5 461 (1998).Google Scholar
18 Yaralioglu, G. G.; Degertekin, F. L.; Crozier, K. B.; Quate, C. F. J. Appl. Phys. 87 7491 (2000).Google Scholar
19 Kracke, B.; Damaschke, B. Appl. Phys Lett., 77 361 (2000).Google Scholar
20 Jiang, W.; Yang, W.; Zeng, X.; Fu, S. Journal of Polymer Science: Part A: Polymer Chemistry, 42 733 (2004).Google Scholar
21 Briscoe, B. J.; Fiori, L.; Pelillo, E. J. Phys. D: Appl. Phys., 31 2395 (1998).Google Scholar