Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T02:37:25.818Z Has data issue: false hasContentIssue false

Nanorheology of Polymers, Block Copolymers, and Complex Fluids

Published online by Cambridge University Press:  15 February 2011

A. Levent Demirel
Affiliation:
Department of Materials Science and EngineeringUniversity of IllinoisUrbana, IL 61801
Lenore Cai
Affiliation:
Department of Materials Science and EngineeringUniversity of IllinoisUrbana, IL 61801
Ali Dhinojwala
Affiliation:
Department of Materials Science and EngineeringUniversity of IllinoisUrbana, IL 61801
Steve Granick
Affiliation:
Department of Materials Science and EngineeringUniversity of IllinoisUrbana, IL 61801
J. M. Drake
Affiliation:
Exxon Research & Engineering Corp. Annandale, NJ 08801
Get access

Abstract

The shear rheology of molecularly-thin films of fluids has been studied experimentally as it depends on sinusoidal frequency (linear response) or on sliding velocity (nonlinear response). Building upon previous identification of a solidlike state that is induced by confinement, we find the shearinduced transition to a sliding state in which the viscous dissipation is essentially velocity-independent. The mechanism appears to involve wall slip but Fourier transforms of the response reveal fluctuations, intrinsic to the sliding state, over all accessible frequencies. Other ongoing studies involve shear-induced changes in the fluorescence of confined fluorescent probes, shear dilatancy, and the contrast between the shear of simple nonpolar fluids, and block copolymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Van Alsten, J.; Granick, S., Phys. Rev. Lett. 61, 2570 (1988).Google Scholar
2. Israelachvili, J. N., McGuiggan, P. M., Homola, A. M., Science 240, 189 (1988).Google Scholar
3. Homola, A. M., Nguyen, H. V., Hadziioannou, G., J. Chem. Phys. 94, 2346 (1991).Google Scholar
4. Peachey, J., Van Alsten, J., Granick, S., Rev. Sci. Inst. 62, 463 (1991).Google Scholar
5. Tonck, A., Georges, J. M., Loubet, J. L., J. Coll. Interface Sci. 126, 150 (1988).Google Scholar
6. Pelletier, E., Montfort, J. P., Lapique, F., J. Rheol. 38, 1151 (1994).Google Scholar
7. Mate, C. M., McClelland, G. M., Erlandsson, R. and Chiang, S., Phys. Rev. Lett. 59 1942 (1987).Google Scholar
8. Erlandsson, R., Hadziioannou, G., Mate, C. M., McClelland, G. M., and Chiang, S., J. Chem. Phys. 89, 5190 (1988).Google Scholar
9. Krim, J., Solina, D. H., and Chiarello, R., Phys. Rev. Lett. 66, 181 (1991).Google Scholar
10. Landman, U., Luedtke, W. D., and Ribarsky, M. W., J. Vac. Sci. Technol. A 7, 2829 (1990).Google Scholar
11. Landman, U., Luedtke, W. D., Burnham, N. A., and Colton, R. J., R.J., Science 248, 454 (1990).Google Scholar
12. Sokoloff, J. B., Phys. Rev. B 42, 760 (1990).Google Scholar
13. Rhykerd, C. L. Jr., Schoen, M., , M., Diestler, D. J., Cushman, J. H., Nature 330, 461 (1987).Google Scholar
14. Thompson, P. A., Robbins, M. O., Science 250, 792 (1990).Google Scholar
15. Ribarsky, M. W., Landman, U., J. Chem. Phys. 97, 1937 (1992),Google Scholar
16. Thompson, P. A., Grest, G. S., Robbins, M. O., Phys. Rev. Lett. 68, 3448 (1992).Google Scholar
17. Gupta, S., et al., J. Chem. Phys. 100, 8444 (1994).Google Scholar
18. Braiman, Y., Goldhirsch, I., Klafter, J., Phys. Rev. E. 50, 838 (1994).Google Scholar
19. Persson, B. N. J., Phys. Rev. B 50, 4771 (1994).Google Scholar
20. Kessel, C. and Granick, S., Langmuir 7, 532 (1991); J. Peanasky et al., Langmuir, in press.Google Scholar
21. see other articles in this volume.Google Scholar
22. Chan, D.Y.C., Horn, R. G., J. Chem. Phys. 83, 5311 (1985).Google Scholar
23. Wang, Y., Hill, K., Harris, J. G., J. Chem. Phys. 100, 3276 (1994).Google Scholar
24. Granick, S., Demirel, A. L., Cai, L., Peanasky, J., Israel J. Chem., in press.Google Scholar
25. Granick, S., Hu, H.-W., Langmuir 10, 3857 (1994).Google Scholar
26. Granick, S., Hu, H.-W., Carson, G. A., Langmuir 10, 3867 (1994).Google Scholar
27. Peanasky, J., Cai, L., Kessel, C. R., Granick, S., Langmuir 10, 3874 (1994).Google Scholar
28. Klein, J., Kumacheva, E., Mahalu, D., Perahia, D., Fetters, L. J., Nature 370, 634 (1994).Google Scholar
29. Cai, L. and Granick, S., submitted.Google Scholar
30. Israelachvili, J. N. and Adams, G. E., J. Chem. Soc. Faraday Trans. II 74, 975 (1978).Google Scholar
31. Drake, J. M., to be published.Google Scholar
32. Reiter, G., Demirel, A. L., Granick, S., Science 263, 1741 (1994).Google Scholar
33. for a review, see Halperin, A., Tirrell, M., Lodge, T., Adv. Polymer Sci. 100, 31 (1991).Google Scholar