Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T08:42:07.400Z Has data issue: false hasContentIssue false

Nanohole and Nanopillar Arrays on GaAs and GaSb Using Nanosphere Lithography and Bromine Ion Beam Assisted Etching

Published online by Cambridge University Press:  01 February 2011

Xifeng Qian
Affiliation:
[email protected], University of Massachusetts Lowell, Physics and Applied Physics, 720 Suffolk St., Lowell, MA, 01854, United States, 978-934-3982
Jin Li
Affiliation:
[email protected], University of Massachusetts Lowell, Photonics Center, Department of Physics and Applied Physics, 720 Suffolk St., Lowell, MA, 01854, United States
William D. Goodhue
Affiliation:
[email protected], University of Massachusetts Lowell, Photonics Center, Department of Physics and Applied Physics, 720 Suffolk St., Lowell, MA, 01854, United States
Get access

Abstract

Nanosphere lithography (NSL) has been successfully used to nanopattern silicon and glass substrate surfaces using a spin process in conjunction with the chemical functionalized polystyrene nanospheres. Here, we report for the first time the formation of periodic arrays of nanohole and nanopillar on GaAs and GaSb substrates using a combination of NSL, electron beam (E-Beam) evaporation and Bromine Ion Beam Assisted Etching (Br-IBAE). When 250 nm diameter nanospheres were used as a template or mask, periodic arrays of approximate 55 nm hexagonal nanoholes and 39 nm hexagonal nanopillars were obtained from double-layer nanosphere templates, while arrays of approximate 65nm triangular nanohole and 53nm triangular nanopillar were obtained from single-layer nanosphere templates. The high uniformity of these nanohole and nanopillar arrays demonstrates the technique¡¦s potential for applications in the fabrication of novel high performance opto- and electronic devices in the important GaAs and GaSb III-V direct bandgap semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rossel, P., Cabot, J. J, Graffeuil, J., Appl. Phys. Lett., 25, 510511 (1974)Google Scholar
2. Harmon, E. S, Mclnturff, D. T, Melloch, M. R, Woodall, J. M, J. Vac. Sci. Tech. B, 13, 768770 (1995)Google Scholar
3. Semykina, E. A, Rose, K. S., J. Appl. Phys., 82, 670676 (1997)Google Scholar
4. Sun, D. C, Friberg, S. R, Watanabe, K., Machida, S., Horikoshi, Y., Yamamoto, Y., Appl. Phys. Lett., 61, 15021503 (1992)Google Scholar
5. Ito, T., Okazaki, S., Nature, 406, 10271031 (2000)Google Scholar
6. Smith, H. I, Schattenburg, M. L, IBM J. Res. Develop, 37, 319329 (1993)Google Scholar
7. Arshak, K., Mihov, M., J. Optoelec. Adv. Mat., 7, 193198 (2005)Google Scholar
8. Campbell, M., Sharp, D.N., Harrison, M. T, Denning, R. G, Turberfield, A. J, Nature, 404, 53 (2000)Google Scholar
9. Denkov, N.D., Nature, 361, 26, 1993 Google Scholar
10. Li, W., Xu, L., Zhao, W. M, Sun, P., Huang, X. F, Chen, K. J, Appl. Sur. Sci. 253, 90359038 (2007)Google Scholar
11. Hulteen, J. C, Duyne, R. P. Van, J. Vac. Sci. Technol. A, 13, 15531558 (1995)Google Scholar
12. Kosiorek, A., Kandulski, W., Glaczynska, H., and Giersig, M., small, 1, 439444 (2005)Google Scholar
13. Park, K. H, Lee, S., Koh, K. H, Lacerda, R., Teo, K. B. K., Milne, W. I, J. Appl. Phys., 97, 024311 (2005)Google Scholar
14. Goodue, W. D, Royter, Y., Mull, D. E, Choi, S. S, Fonstad, C. G, J. Elec. Mat., 28, 364368 (1999)Google Scholar