No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
The initial periods of deposition process of metal clusters in the soft-landing regime are investigated by the molecular-dynamics simulation. The embedded-atom method potential is adopted for calculation of the interaction between metallic atoms. The predictor-corrector method for second-order differential equations is employed for integration of the equations of motion. A simulation begins with equilibration of clusters and a substrate at a specified temperature. The lowest atomic layer in the substrate is fixed and the next few atomic layers are set to be velocity-scaling layers during the deposition process. The periodic boundary conditions are imposed in the horizontal directions. A single cluster with no velocity is deposited on the substrate. The simulations are performed at different temperatures of the clusters and substrate and for different sizes of clusters. How the morphological transition of the deposited nanostructures is affected by these parameters is discussed.