Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T08:34:22.062Z Has data issue: false hasContentIssue false

Molecular Beam Epitaxial Growth and Characterization of GaAs on Sapphire and Silicon-on-Sapphire Substrates

Published online by Cambridge University Press:  26 February 2011

T. P. Humphreys
Affiliation:
Bell-Northem Research Ltd., Ottawa, Ontario KIY 4H7, Canada.
C. J. Miner
Affiliation:
Bell-Northem Research Ltd., Ottawa, Ontario KIY 4H7, Canada.
N. R. Parikh
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599–3255.
K. Das
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907.
M. K. Summerville
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695–7907.
J. B. Posthill
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709–2194.
R. J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695–8202.
C. A. Sukow
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695–8202.
Get access

Abstract

Epitaxial GaAs layers have been grown by molecular beam epitaxy on (1012) sapphire and silicon-on-sapphire substrates. The grown layers were characterized by optical and transmission electron microscopy; Rutherford backscattering/channeling of 2.1 MeV He+ ions; Raman spectroscopy; Hall mobility measurements; photoluminescence spectroscopy and current-voltage measurements from metal-semiconductor contacts. The extensive microstructural, electrical and optical analysis of the GaAs layers indicates that the films deposited on silicon-on-sapphire are superior to those grown directly on (1012) sapphire substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Humphreys, T.P., Das, K., Posthill, J.B., Tam, J.C.L., Jaing, B.L., Wortman, J.J. and Parikh, N.R., Jpn. J. Appl. Phys. 27, 1458 (1988).CrossRefGoogle Scholar
2. Fischer, R., Morkog, H., Neumann, D.A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M. and Erickson, L.P., J. Appl. Phys. 60, 1640 (1986).CrossRefGoogle Scholar
3. Manasevit, H., Appl. Phys. Lett. 12, 156 (1968); J. Crystal Growth 13/14, 306 (1982).CrossRefGoogle Scholar
4. Das, K., Humphreys, T.P., Posthill, J.B., Tam, J.C.L., Wortman, J.J. and Parikh, N.R., J. Appl. Phys. 64, 3934 (1988).CrossRefGoogle Scholar
5. Posthill, J.B., Tam, J.C.L., Das, K., Humphreys, T.P. and Parikh, N.R., Appl.. Phys. Lett. 53, 1207 (1988).CrossRefGoogle Scholar
6. Sheldon, P., Yacobi, B.G., Jones, K.M. and Dunlavy, D.J., J. Appl. Phys. 58, 1486 (1985).CrossRefGoogle Scholar
7. Chai, Y.G. and Chow, R., J. Appl. Phys. 53, 1229 (1982).CrossRefGoogle Scholar
8. Kern, W. and A Puotinen, D., RCA Rev. 13, 187 (1970).Google Scholar
9. Summerville, M.K. and Posthill, J.B., J. Electron Microsc. Tech., in press.Google Scholar
10. Dickson, E.W., Jacobs, M.H. and W Pashley, D., Phil. Mag. 11, 575 (1965); and M.H. Jacobs and M.J. Stowell, Ibid. 11, 591 (1965).CrossRefGoogle Scholar
11. Das, K., Humphreys, T.P., Posthill, J.B., Parikh, N.R. and Nemanich, R.J., unpublished research.Google Scholar
12. Shen, H. and Pollak, F.H., Appl. Phys. Lett. 45, 692 (1984).CrossRefGoogle Scholar
13. Nemanich, R.J., Biegelsen, D.K., Street, R.A., Downs, B., Krusor, B.S. and Yingling, R.D., Mat. Res. Soc. Symp. Proc. 116,245 (1988).CrossRefGoogle Scholar
14. Lampert, M.A. and Mark, P., Current Injection in Solids, Academic Press, New York (1970).Google Scholar
15. Nauka, K., Reid, G.A., Rosner, S.J., Koch, S.M. and Harris, J.S., Mat. Res. Soc. Symp. Proc. 91, 225 (1987).CrossRefGoogle Scholar