Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T10:17:17.278Z Has data issue: false hasContentIssue false

Modification of Recombination Activity of Dislocations in Si and SiGe by Contamination and Hydrogenation

Published online by Cambridge University Press:  26 February 2011

M. Kittler
Affiliation:
Institut für Halbleiterphysik, PSF 409, 15204 Frankfurt(Oder), Germany
W. Seifert
Affiliation:
Institut für Halbleiterphysik, PSF 409, 15204 Frankfurt(Oder), Germany
V. Higgs
Affiliation:
King’s College, Strand, London WC2R 2LS, UK
Get access

Abstract

Temperature-dependent (80 … 300 K) measurements of dislocation recombination activity by the electron-beam-induced-current (EBIC) technique are reported. Controlled Cu contamination (ppb to ppm range), chemomechanical polishing and hydrogenation treatments were applied to alter dislocation properties. Increasing Cu level is found not only to increase the electrical activity of misfit dislocations in SiGe/Si structures at 300 K, but also to change its dependence on temperature. At low contamination, shallow centres control dislocation activity while deep centres are characteristic at higher Cu levels. Heavy Cu contamination results in very strong recombination activity which is attributed to precipitates. Chemomechanical polishing has an effect which is analogous to medium Cu contamination. Hydrogenation was found to passivate recombination activity at 300 K, but did not show pronounced effects on activity at low temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

/1/ Kveder, V.V., in Gettering and Defect Engineering in Semiconductor Technology, edited by Grimmeiss, H.G., Kittler, M. and Richter, H., Solid State Phenom. Vols. 32–33 (1993), p. 279; V. Higgs, Solid State Phenom., p. 291; Z.J. Radzimski, A. Buczkowski, G.A. Rozgonyi, Solid State Phenom., p.309Google Scholar
/2/ Kimerling, L.C., Leamy, H..J., Patel, J. R., Appl. Phys. Lett. 30, 217 (1977)Google Scholar
/3/ Wilshaw, P.R., Fell, T.S., Booker, G.R., in Point and Extended Defects in Semiconductors. edited by Benedek, G., Cavallini, A., Schröter, W. (Plenum, New York, 1989), p. 243 Google Scholar
/4/ Kusanagi, S., Sekiguchi, T., Sumino, K., Appl. Phys. Lett. 61, 792 (1992)Google Scholar
/5/ Radzimski, Z.J., Zhou, T.Q., Buczkowski, A.B., Rozgonyi, G.A., Finn, D., Hellwig, L.G., Ross, J.A., Appl. Phys. Lett. 60, 1096 (1992)Google Scholar
/6/ Kittler, M., Seifert, W., Radzimski, Z.J., Appl. Phys. Lett. 62, 2513 (1993)Google Scholar
/7/ Kittler, M., Seifert, W., Scanning 15, 316 (1993)Google Scholar
/8/ Kittler, M., Seifert, W., phys. stat. sol. (a) 138, 687 (1993)Google Scholar
/9/ Kittler, M., Seifert, W., Mater. Sci. Eng. B 24, 78 (1994)Google Scholar
/10/ Kittler, M., Seifert, W., V. Higgs, phys. stat. sol. (a) 137 , 327 (1993)Google Scholar
/11/ Higgs, V., Kittler, M., Appl. Phys. Lett. 65, 2804 (1994)Google Scholar
/12/ McHugo, S.A., Sawyer, W.D., Appl. Phys. Lett. 62, 2519 (1993)Google Scholar
/13/ Kittler, M., Seifert, W., Morgenstern, G., J. Electrochem. Soc. 140, 556 (1993)Google Scholar
/14/ Donolato, C., phys. stat. sol. (a) 135, K13 (1993)Google Scholar
/15/ Kittler, M., Lärz, J., Seifert, W., Seibt, M., Schröter, W., Appl. Phys. Lett. 58, 911 (1991)Google Scholar