Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T05:01:43.072Z Has data issue: false hasContentIssue false

Modeling of Spin Injection and Spin Transport Properties in Organic and Inorganic Semiconductors

Published online by Cambridge University Press:  01 February 2011

P. P. Ruden
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.
J. D. Albrecht
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, U.S.A.
D. L. Smith
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Get access

Abstract

Spin polarized charge carrier injection and transport in non-magnetic semiconductors is a key enabling mechanism for spin based electronic data processing. We present theoretical models to describe spin injection and spin transport in structures consisting of a ferromagnetic metal injector, a thin semiconductor layer, and a ferromagnetic metal collector. The semiconductors considered are conjugated polymers (e.g. PPV), small-molecule organic molecular crystals (e.g. pentacene), and inorganic semiconductors (e.g. silicon). In thermal equilibrium the charge carriers in these semiconductors are not spin polarized. Efficient spin injection requires that the semiconductor be driven far out of local thermal equilibrium. Since carrier mobilities (and other relevant parameters) in polymers, organic molecular crystals, and inorganic semiconductors differ by many orders of magnitude, their charge carrier injection characteristics differ significantly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1See for example: “Special Issue on Spintronics,” Proceedings of the IEEE 91, 647821 (2003).Google Scholar
2 Isakovic, A., Carr, D.M., Strand, J., Schultz, B.D., Palmstrom, C.J., and Crowell, P.A., Phys. Rev. B 64, 016601 (2001).Google Scholar
3 Zhu, J.H., Ramsteiner, M., Kostial, H., Wassermeier, M., Schonherr, H.-P., Ploog, K.H., Phys. Rev. Lett. 87, 016601 (2001).Google Scholar
4 Hanbicki, A.T., Jonker, B.T., Itskos, G., Kioseoglou, G., and Petrou, A., Appl. Phys. Lett. 80, 1240 (2002).Google Scholar
5 Dediu, V., Murgia, M., Matacotta, F.C., Taliani, C., Barbanera, S., Solid State Commun. 122, 181 (2002).Google Scholar
6 Xiong, Z.H., Wu, D., Vardeny, Z. Valy, and Shi, J., Nature 427, 821 (2004).Google Scholar
7 Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., Wees, B.J. van, Phys. Rev. B 62, R4790 (2000).Google Scholar
8 Rashba, E.I., Phys. Rev. B, 62, R16276 (2000) and D.L. Smith and R.N. Silver, Phys. Rev. B 64, 045323 (2001).Google Scholar
9 Albrecht, J.D. and Smith, D.L., Phys. Rev. B 66, 113303 (2002).Google Scholar
10 Ruden, P.P. and Smith, D.L., J. Appl. Phys. 95, 4898 (2004).Google Scholar
11 Sze, S.M., Semiconductor Devices: Physics and Technology, (Wiley, 1985).Google Scholar