Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T03:13:37.426Z Has data issue: false hasContentIssue false

Modeling And Photoabsorption Study of YPd2-xRhxB2C Superconductors

Published online by Cambridge University Press:  01 February 2011

L.-S. Hsu
Affiliation:
Department of Physics, National Chang-Hua University of Education, Chang-Hua 50058, Taiwan, ROC
Y. K. Wang
Affiliation:
Department of Physics, National Taiwan University, Taipei 106, Taiwan, ROC
G. Y. Guo
Affiliation:
Department of Physics, National Taiwan University, Taipei 106, Taiwan, ROC Synchrotron Radiation Research Center, Hsinchu 300, Taiwan, ROC
Y.-J. Huang
Affiliation:
Department of Physics, National Chung Hsing University, Taichung 402, Taiwan, ROC
M.-D. Lan
Affiliation:
Department of Physics, National Chung Hsing University, Taichung 402, Taiwan, ROC
Get access

Abstract

The electronic structures of six polycrystalline borocarbide superconductors YPd5-xRhxB3C0.4 (x=0, 0.05, 0.1, 0.15, 0.2, and 0.25) were studied by photoemission and photoabsorption spectroscopies and theoretical calculations. The valence-band (VB) photoemission spectrum is compared with the theoretical total and partial density-of-states (DOS) curves. The Pd L3-edge x-ray absorption near edge spectra (XANES) are compared with the calculated XANES spectra for these intermetallic compounds. The decrease of the superconducting transition temperatures (Tc) with addition of Rh dopant in these compounds is due to a decrease of the total DOS at the Fermi level (EF).

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cava, R. J., Takagi, H., Batlogg, B., Zandbergen, H. W., Krajewski, J. J., Peck, W. F. Jr, Dover, R. B. van, Felder, R. J., Siegrist, T., Mizuhashi, K., Lee, J. O., Eisaki, H., Carter, S. A., and Uchida, S., Nature 367, 146 (1994).Google Scholar
2. Cava, R. J., Takagi, H., Zandbergen, H. W., Krajewski, J. J., Peck, W. F. Jr, Siegrist, T., Batlogg, B., Dover, R. B. van, Felder, R. J., Mizuhashi, K., Lee, J. O., Eisaki, H., and Uchida, S., Nature 367, 252 (1994).Google Scholar
3. Sun, Y. Y., Rusakova, I., Meng, R. L., Cao, Y., Gautier-Picard, P., and Chu, C. W., Physica C 230, 435 (1994).Google Scholar
4. Zeng, Z., Ellis, D. E., Guenzburger, D., and Baggio-Saitovitch, E. M., Phys. Rev. B53, 6613 (1996).Google Scholar
5. Bud'ko, S. L., Elmassalami, M., Fontes, M. B., Mondragon, J., Vanoni, W., Giordanengo, B., and Baggio-Saitovitch, E. M., Physica C243, 183 (1995).Google Scholar
6. Hsu, L.-S., Guo, G. Y., Chen, C.-J., Lan, M.-D., and Lee, J.-F., in Applications of Synchrotron Radiation Techniques to Materials Science VI, edited by Perry, D. L., Mini, S., and Ade, H. (Mat. Res. Soc. Symp. Proc. 678, p. EE8.5.1).Google Scholar
7. Zandbergen, H. W., Sloof, W. G., Cava, R. J., Krajewski, J. J., and Peck, W. F., Physica C 226, 365 (1994).Google Scholar
8. Strom, V., Kim, K. S., Grishin, A. M., and Rao, K. V., J. Appl. Phys. 79, 5860 (1996).Google Scholar
9. Coehoorn, R., Physica C 228, 331 (1994).Google Scholar
10. Huang, Y.-J. and Lan, M.-D. (unpublished).Google Scholar
11. Blaha, P., Schwarz, K., and Luitz, J., computer code WIEN97 (Vienna University of Technology, 1997). [Improved and updated UNIX version of the original copyrighted WIEN code, which was published by Blaha, P., Schwarz, K., Sorantin, P., and Trickey, S. B., in Comput. Phys. Commun. 59, 399 (1990)].Google Scholar
12. Perdew, J. P., Burke, S., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
13. Blochl, P. E., Jepsen, O., and Andersen, O. K., Phys. Rev. B49, 16223 (1994).Google Scholar