Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T04:11:36.186Z Has data issue: false hasContentIssue false

Mid-IR Interband Cascade Lasers

Published online by Cambridge University Press:  01 February 2011

Rui Q. Yang
Affiliation:
[email protected], Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA, 91109, United States, 818-393-4946, 818-393-4663
Cory J. Hill
Affiliation:
Yueming Qiu
Affiliation:
Get access

Abstract

Efficient mid-IR interband cascade (IC) lasers have been developed based on III-V semiconductor materials with lasing emission covering a wavelength range from 2.7 to 5.6 microns. These IC lasers reuse injected electrons in cascade stages for photon generation with high quantum efficiency to achieve high output powers. Also, IC lasers have a low threshold current density with a very efficient use of applied voltage, resulting in reduced power consumption. Single-mode distributed feedback lasers have been made, and integrated into aircraft and balloon instruments which made atmospheric measurements of CH4 and HCl. In this work, the characteristics of IC lasers and their recent developments are reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, R. Q., at 7th Inter. Conf. on Superlattices, Microstructures and Microdevices, Banff, Canada, Aug. 1994; Superlattices and Microstructures 17, 77 (1995).Google Scholar
2. Meyer, J. R., Vurgaftman, I., Yang, R. Q., and Ram-Mohan, L. R., Electronics Letters, 32, 45 (1996).Google Scholar
3. Vurgaftman, I., Meyer, J. R., and Ram-Mohan, L. R., IEEE Photo. Tech. Lett. 9, 170 (1997).Google Scholar
4. Yang, R. Q., Microelectronics J. 30, 1043 (1999); and references therein.Google Scholar
5. Yang, R. Q., et al. , IEEE J. Quantum Electron. 38, 559 (2002); and reference therein.Google Scholar
6. Yang, R. Q., Hill, C. J., Yang, B., Liu, J. K., Appl. Phys. Lett. 83, 2109 (2003).Google Scholar
7. Hill, C. J., Yang, B., Yang, R. Q., Physica E 20, 486 (2004).Google Scholar
8. Yang, R. Q., Hill, C. J., Yang, B., Wong, C. M., Muller, R. and Echternach, P., Appl. Phys. Lett. 84, 3699 (2004).Google Scholar
9. Bradshaw, J. L., et al. , Physica E 20, 479 (2004).Google Scholar
10. Yang, R. Q., Hill, C. J., Yang, B., Wong, C. M., IEEE Photon. Technol. Lett. 16, 987 (2004).Google Scholar
11. Hill, C. J., Wong, C. M., Yang, B., Yang, R. Q., Electronics Lett. 40, 878 (2004).Google Scholar
12. Yang, R. Q., Hill, C. J., Christensen, L. E., Webster, C. R., Proc. SPIE 5624, 413 (2005).Google Scholar
13. Hill, C. J., and Yang, R. Q., Crystal, J. Growth 278, 167 (2005).Google Scholar
14. Yang, R. Q., Hill, C. J., Yang, B., Appl. Phys. Lett. 87, 151109 (2005).Google Scholar
15. Horstjann, M., et al. , Appl. Phys. B 79, 799(2004).Google Scholar
16. Faist, J., Capasso, F., Sirtori, C., Sivco, D. L., Hutchinson, A. L., Cho, A. Y., Appl. Phys. Lett. 67, 3057 (1995).Google Scholar
17. Gmachl, C., Sergent, A. M., Tredicucci, A., Capasso, F., Hutchinson, A. L., Sivco, D. L., Baillargeon, J. N., Chu, S. N. G., and Cho, A. Y., IEEE Photo. Technol. Lett. 11, 1369 (1999).Google Scholar
18. Bewley, W. W., Felix, C. L., Aifer, E. H., Stokes, D. W., Vurgaftman, I., Olafsen, L. J., Meyer, J. R., Yang, M. J., and Lee, H., IEEE Quantum Electron. 35, 1597 (1999).Google Scholar
19. Kogelnik, H. and Shank, C. V., J. Appl. Phys. 43, 2327 (1972).Google Scholar
20. Hill, C. J., and Yang, R. Q., Appl. Phys. Lett. 85, 3014 (2004).Google Scholar