Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T05:05:50.088Z Has data issue: false hasContentIssue false

Microstructure and Nonstoichiometry of Barium Strontium Titanate thin films for dram Applications

Published online by Cambridge University Press:  10 February 2011

S. Stemmer
Affiliation:
Department of Physics, University of Illinois at Chicago, Chicago, IL 60607–7059, [email protected]
S. K. Streiffer
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439–4838
N. D. Browning
Affiliation:
Department of Physics, University of Illinois at Chicago, Chicago, IL 60607–7059, [email protected]
A. I. Kingon
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695–7907
Get access

Abstract

In this paper we investigate the microstructural accommodation of nonstoichiometry in (BaxSr1-x)Ti1+yO3+Z thin films grown by chemical vapor deposition. Films with three different (Ba+Sr)/Ti ratios of 49/51 (y=0.04 in the notation of the formula above), of 48/52 (y = 0.08) and of 46.5/53.5 (y=0.15), were studied. High-resolution electron microscopy is used to study the microstructure of the BST films. High-spatial resolution electron energy-loss spectroscopy (EELS) is used to reveal changes in chemistry and local atomic environment both at grain boundaries and within grains as a function of titanium excess. We find an amorphous phase at the grain boundaries and grain boundary segregation of excess titanium in the samples with y=0.15. In addition, EELS is also used to show that excess titanium is being partially accommodated in the grain interior. Implications for the film electrical and dielectric properties are outlined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See Kingon, A. I., Streiffer, S. K., Basceri, C., and Summerfelt, S. R., MRS Bull. 21, 46 (1996), and references therein.10.1557/S0883769400035910Google Scholar
2. Basceri, C., Streiffer, S. K., Kingon, A. I., Waser, R., J. Appl. Phys. 82, 2497 (1997).10.1063/1.366062Google Scholar
3. See Dietz, G. W., Schumacher, M., Waser, R., Streiffer, S. K., Basceri, C., Kingon, A. I., J. Appl. Phys. 82, 2359 (1997), and references therein. S. Zafar, R.E. Jones, Bo Jiang, B. White, P. Chu, D. Taylor, and S. Gillespie, Appl. Phys. Lett. 73, 175 (1998). Y. Fukuda, K. Numata, K. Aoki, A. Nishimura, G. Fujihashi, S. Okamura, S. Ando, and T. Tsukamoto, Jap. J. Appl. Phys. Part 2 (Letters) 37, L453 (1998).10.1063/1.366045Google Scholar
4. Basceri, C., Lash, S.E., Parker, C.B., Streiffer, S.K., Kingon, A.I., Grossmann, M., Hoffmann, S., Schumacher, M., Waser, R., Bilodeau, S., Carl, R., Buskirk, P.C. van, and Summerfelt, S.R., in Ferroelectric Thin Films VI, MRS Symp. Proc. 493 edited by Treece, R.E., Jones, R.E., Foster, C.M., Desu, S.B., and Yoo, I.K., (MRS, Warrendale, PA, 1998), pp. 9–.Google Scholar
5. Numata, K., Fukuda, Y., Aoki, K., and Nishimura, A., Jap. J. Appl. Phys. Part 1 34, 5245 (1995).10.1143/JJAP.34.5245Google Scholar
6. Yamamichi, S., Yabuta, H., Sakuma, T., Miyasaka, Y., Appl. Phys. Lett. 64, 1644 (1994).10.1063/1.111818Google Scholar
7. Kawahara, T., Yamamuka, M., Makita, T., Naka, J., Yuuki, A., Mikami, N., Ono, K., Jpn. J. Appl. Phys. 33, 5129 (1994).10.1143/JJAP.33.5129Google Scholar
8. Buskirk, P. C. van, Roeder, J. F., Bilodeau, S., Integr. Ferroelectr. 10, 9 (1995). S.M. Bilodeau, R. Carl, P.C. Van Buskirk, J.F. Roeder, C. Basceri, S.E. Lash, C.B. Parker, S.K. Streiffer, and A.I. Kingon, J. Korean Phys. Soc. 32, S 1591 (1998).10.1080/10584589508012259Google Scholar
9. Basceri, C., Ph. D. Dissertation, North Carolina State University (1997).Google Scholar
10. Sharma, R.K., Chan, N.-H., and Smyth, D.M., J. Am. Ceram. Soc. 64, 448 (1981). S. Witek, D.M. Smyth, and H. Pickup, J. Am. Ceram. Soc. 67, 372 (1984).10.1111/j.1151-2916.1981.tb09894.xGoogle Scholar
11. James, E. M., Browning, N. D., Ultramicroscopy, in press. (1999).Google Scholar
12. Browning, N. D., Chisholm, M. F., Pennycook, S. J., Nature 366 143 (1993).10.1038/366143a0Google Scholar
13. Levin, I., Leapman, R.D., Kaiser, D. L., to be published.Google Scholar
14. Stemmer, S., Streiffer, S. K., Browning, N. D., Kingon, A. I., Applied Physics Letters, in press.Google Scholar
15. Wallis, D. J., Browning, N. D., J. Am. Ceram. Soc. 80 781 (1997).10.1111/j.1151-2916.1997.tb02899.xGoogle Scholar
16. Browning, N. D., Moltaji, H. O., Buban, J. P., Phys. Rev. B 58, 8289 (1998).10.1103/PhysRevB.58.8289Google Scholar
17. Brydson, R., Sauer, H., Engel, W., Hofer, F., J. Phys.: Condens. Matter 4, 3429 (1992).Google Scholar
18. Groot, F. M. F. de, Faber, J., Michiels, J. J. M., Czyzyk, M. T., Abbate, M., Fuggle, J. C., Phys. Rev. B 48, 2074 (1982).10.1103/PhysRevB.48.2074Google Scholar
19. Brydson, R., Sauer, H., Engel, W., Thomas, J. M., Zeitler, E., Kosugi, N., Kuroda, H., J. Phys.: Condens. Matter 1, 797 (1989).Google Scholar
20. Browning, N. D., Pennycook, S. J., J. Phys. D: Appl. Phys. 29, 1779 (1996).10.1088/0022-3727/29/7/013Google Scholar
21. Groot, F. M. F. de, J. Electron Spectrosc. 67, 529 (1994).10.1016/0368-2048(93)02041-JGoogle Scholar
22. Recnik, A., Bruley, J., Mader, W., Kolar, D., Ruihle, M., Philos. Mag. B 70, 1021 (1994).10.1080/01418639408240270Google Scholar
23. Chiang, Y-M.. Takagi, T., J. Am. Ceram. Soc. 73, 3278 (1990).10.1111/j.1151-2916.1990.tb06450.xGoogle Scholar