Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T08:00:29.941Z Has data issue: false hasContentIssue false

Mesotaxy Layers of IrSi3 in (111)Si Formed by MeV ION Implantation

Published online by Cambridge University Press:  28 February 2011

K. T. Short
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Alice E. White
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. J. Eaglesham
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. C. Jacobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Iridium has been implanted at 1MeV and 500keV in the dose range 1 to 3×1017/cm2 at 525°C to form a buried Ir-rich region ∼ 2500Å below the surface in (111)Si. Samples were annealed at temperatures in the range 600°C to 1200°C to form buried IrSi3 layers. Rutherford backscattering and channeling analysis in conjunction with transmission electron microscopy were used to study the formation and the alignment of the IrSi3 layer to the silicon host as a function of annealing. For a dose of 2×1017 Ir/cm2, stoichiometric IrSi3 formed beneath ∼ 2000Å of Si after annealing to 1100°C. The IrSi3 layer was aligned with the Si substrate with Xmin ∼12%, but a band of precipitates remained either side of the main layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Murarka, S. P., Silicides for VLSI Applications, (Academic Press, New York, 1983), pp. 1423.Google Scholar
[2] de Sousa Pires, J., Ali, P., Crowder, B., d'Heurle, F., Petersson, S., Stolt, L. and Tove, P. A., Appl. Phys. Lett. 35, 202 (1979).Google Scholar
[3] Ohdomari, I., Kuan, T. S. and Tu, K. N., J. Appl. Phys. 50, 7020 (1979).Google Scholar
[4] Sze, S. M., Physics of Semiconductor Devices, 2nd. ed. (John Wiley & Sons, New York, 1981), p. 247.Google Scholar
[5] Shepherd, F. D. Jr and Young, A. C., IDEM Tech. Dig., p. 310 (1973).Google Scholar
[6] Petersson, S., Baglin, J., Hammer, W., D'Heurle, F., Kuan, T. S., Ohdomari, I., de Sousa Pires, J. and Tove, P., J. Appl. Phys. 50, 3357 (1979).CrossRefGoogle Scholar
[7] Weiss, B. Z., Tu, K. N. and Smith, D. A., J. Appl. Phys. 59, 415 (1986).Google Scholar
[8] Wittmer, M., Oelhafen, P. and Tu, K. N., Phys. Rev. B 35, 9073 (1987).Google Scholar
[9] Chu, J. J., Chen, L. J. and Tu, K. N., J. Appl. Phys. 63, 1163 (1988).Google Scholar
[10] White, J. G. and Hockings, E. F., Inorganic Chem. 10, 1934 (1971).Google Scholar
[11] White, A. E., Short, K. T., Dynes, R. C., Garno, J. P. and Gibson, J. M., Appl. Phys. Lett. 50, 95 (1987).Google Scholar
[12] White, A. E., Short, K. T., Dynes, R. C., Gibson, J. M. and Hull, R., Mat. Res. Soc. Symp. Proc. 100, 3 (1988).CrossRefGoogle Scholar
[13] Cheek, T. F. Jr and Chen, D., Mat. Res. Soc. Symp. Proc. 107, 53 (1988).Google Scholar