Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T05:02:22.094Z Has data issue: false hasContentIssue false

Mechanism of Carrier Photoexcitation in Semiconducting Polymers: The Role of Electron Photoemission in “Photoconductivity” Measurements

Published online by Cambridge University Press:  21 March 2011

Daniel Moses*
Affiliation:
Institute for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
Paulo B. Miranda
Affiliation:
Departamento de Física, Universidade Estadual Paulista, Caixa Postal 473, Bauru - SP 17015-970, Brazil
Cesare Soci
Affiliation:
Current Address INFM – Phys. Deptment, University of Pavia, Italy
Alan J. Heeger
Affiliation:
Institute for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
*
#Corresponding author, E-mail: [email protected]
Get access

Abstract

Ultrafast photoinduced absorption by infrared-active vibrational modes (IRAV) is used to detect charged photo-excitations (polarons) in solid films of conjugated luminescent polymers. Experiments, carried out in zero applied electric field, show that polarons are generated within 100 fs with quantum efficiencies of approximately 10%. The ultrafast photoinduced IRAV Absorption, the weak pump-wavelength dependence, and the linear dependence of charge density on pump intensity indicate that both charged polarons and neutral excitons are independently generated even at the earliest times. Measurements of the excitation profile of the transient and steady-state photoconductivity of poly(phenylene vinylene) and its soluble derivatives over a wide spectral range up to hν = 6.2 eV indicate an apparent increase in the “photoconductivity” at hν > 3-4 eV that arises from external currents generated by electron photoemission (PE). After quenching the PE by addition of CO2+SF6 (90%:10%) into the sample chamber, the bulk photoconductivity is nearly independent of photon energy in all polymers studied, in a good agreement with the IRAV spectra. The single threshold for photoconductivity is spectrally close to the onset of π-π* absorption, behavior that is inconsistent with a large exciton binding energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miller, M.D. McGehee e. k., Moses, D., Heeger, A. J., in Bernier, P., (ed.), “Advances in Synthetic Metals”, Elsevier, Lausanne, 1999, p. 98.Google Scholar
2. Moses, D. in “The Nature of Photoexcitations in Conjugated Polymers”, edited by Sariciftci, N.S., (ed.), (World Scientific, Singapore, 1997).Google Scholar
3. Mizrahi, U., Shtrichman, I., Gershoni, D., Ehrenfreund, E., Synth. Met. 102, 1182 (1998).Google Scholar
4. Moses, D., Dogariu, A., Heeger, A.J., Phys. Rev. B 61, 9373 (2000).Google Scholar
5. Barth, S. and Bässler, H., Phys. Rev. Lett. 79, 4445 (1997).Google Scholar
6. Heeger, A. J., Kivelson, S., Schrieffer, J. R., Su, W.P., Rev. Mod. Phys. 60, 781 (1988).Google Scholar
7. Kirova, N., Brazovskii, S., Bishop, A. R., Synth. Met. 100, 29 (1999).Google Scholar
8. Däubler, T. K., Cimrova, V., Pfeiffer, S., Horhold, H., Neher, D., D. Adv. Mater. 11, 1274 (1999).Google Scholar
9. Fincher, C. R., Ozaki, M., Heeger, A. J., MacDiarmit, A. G., Phys. Rev. B 19, 4140 (1979).Google Scholar
10. Horowitz, B., Solid State Commun. 41, 729 (1982).Google Scholar
11. Soos, Z. G., Girlando, A., Painelli, A., Molecular Cryst. And Liq. Cryst. 256, 711 (1994).Google Scholar
12. Sariciftici, N. S., Smilowitz, L., Heeger, A. J., Wudl, F., Science 258, 1474 (1992).Google Scholar
13. Yu, G., Gau, J., Hummelen, J. C., Wudl, F., Heeger, A. J., Science 270, 1789 (1995).Google Scholar
14. Details will be published elsewhere.Google Scholar
15. Su, W. P. and Schrieffer, J. R., Proc. Natl. Acad. Sci. USA 77, 5626 (1980).Google Scholar
16. Soos, Z. G., Haiden, G. W., Girlando, A., Painelli, A. J. Chem. Phys. 100, 7144 (1994).Google Scholar
17. Ruseckas, A., Theander, M., Andersson, M. R., Svensson, M., Prato, M., Inganas, O., Sundstrom, V., Chem. Phys. Lett. 322, 136 (2000).Google Scholar
18. Chandross, M., Mazumdar, S., Jeglinski, S., Wei, X., Vardeny, Z. V., Kwock, E. W., Miller, T. M., Phys. Rev. B 50, 14702 (1994).Google Scholar
19. Köhler, A., Santos, D. A., Beljonne, D., Shuai, Z., Bredas, J.-L., Holmes, A. B., Kraus, A., Mullen, K., Friend, R. H., Nature 392, 903 (1998).Google Scholar
20. Moses, D., Phys. Rev. B 53, 4462 (1996).Google Scholar
21. Denton, G. J., Tessler, N., Stevens, M.A., Friend, R.H., Synth. Met. 102, 1008 (1999).Google Scholar
22. Silva, C., Stevens, M.A., Russell, D.M., Setayesh, S., Mullen, K., Friend, R.H., Synth. Met. 116, 9 (2001).Google Scholar
23. Arkhipov, V. I., Bassler, H., Gobel, E. O., Phys. Rev. Lett. 82, 1321 (1999).Google Scholar
24. Wegewijs, B. R., Dicker, G., Piris, J., Garcia, A.A., M.P. De Haas, Warman, J.M., J.M Chem. Phys. Lett. 332, 79 (2000).Google Scholar
25. Girardeau-Montaut, J. P. and Girardeau-Montaut, C., Appl. Phys. Lett. 62, 426 (1993).Google Scholar
26. Papadoggianis, N. A. and Moustaizis, S. D., J. Phys. D: Appl. Phys. 34, 499 (2001).Google Scholar
27. Itikawa, Y., Phys. Fluids 16, 831 (1973).Google Scholar
28. Hake, R. D., , A. V. P. Jr., and Phelps, A. V., Phys. Rev. 158, 70 (1967).Google Scholar
29. Fehsenfeld, F. C., J. Chem. Phys. 53, 2000 (1970).Google Scholar
30. Bastien, F., Chatterton, P.A., Marode, E., Moruzzi, J.L., J. Phys. D: Appl. Phys. 18, 1327 (1985).Google Scholar
31. Miranda, P., Moses, D., and Heeger, A. J., Phys. Rev. B, Rapid Comm. 64 (8), 81201 (2001).Google Scholar
32. Pope, M. and Swenberg, C. E., Electronic Processes in Organic Crystals (Oxford University press, New York, 1982).Google Scholar
33. Enck, R. C. and Pfister, G., in “Photoconductivity and Related Phenomena”, Mort, J. and Pai, D. M., Eds., (Elsevier Scientific Publications, New York, 1976).Google Scholar
34. Arkhipov, V. I., Emelianova, E. V., and Bassler, H., Phys. Rev. Lett. 82, 1321 (1999).Google Scholar
35. Arkhipov, V. I., Emelianova, E. V., and Bassler, H., Chem. Phys. Lett. 340, 517 (2001).Google Scholar
36. Salaneck, W. R., Friend, R. H., and Bredae, J. L., Phys. Reports 319, 231 (1999).Google Scholar