Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T09:22:49.498Z Has data issue: false hasContentIssue false

Mechanical Properties of Nanocomposite Coatings Fabricated by Sputttering

Published online by Cambridge University Press:  16 February 2011

G. M. Chow
Affiliation:
Research Associate of National Research Council, U.S. National Academy of Sciences
R. L. Holtz
Affiliation:
formerly at NRL with SFA, Inc., Landover, MD 20785
C. Cm. Wu
Affiliation:
Code 6371, Composites and Ceramics Branch, Naval Research Laboratory, Washington, D.C. 20375
A. S. Edelstein
Affiliation:
Code 6371, Composites and Ceramics Branch, Naval Research Laboratory, Washington, D.C. 20375
T. E. Schlesinger
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MN 21218.
R. C. Cammarata
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MN 21218.
Get access

Abstract

A brief study of the microhardness of nanocomposite coatings fabricated by a new technique is reported. The new fabrication technique utilizes sputtering at high pressures in a thermal gradient to produce nanometer-size particles, which are then embedded in a matrix produced by conventional sputtering. The microstructures and microhardness of nanocomposite coatings of Al matrix reinforced by Mo particles (grain diameter ranging from 7 to 20 nm) are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Allen, G.D. and Risbud, S.H., J. Electron. Mater. 16, 423 (1987).Google Scholar
2. Liou, S.H., Chen, C.H., Chen, H.S., Kortan, A.R., and Chien, C.L., Mat. Res. Soc. Symp. Proc. 132, 191 (1989).Google Scholar
3. Edelstein, A.S., Das, B.N., Holtz, R. L., Koon, N. C., Rubinstein, M., Wolf, S.A., and Kihlstrom, K.E., J. Appl. Phys. 61, 3320 (1987).Google Scholar
4. Hockinh, W.H., Tait, J.C., and Hayward, P.J., Appl. Surf. Sci. 32, 193 (1988).Google Scholar
5. Roskova, G.P. and Tsekhomskaya, T.S., Soy. J. Glass Phys. And Chem. 7, 345 (1981).Google Scholar
6. Chow, G.M., Holtz, R.L., Pattnaik, A., Edelstein, A.S., Schlesinger, T.E., and Cammarata, R.C., to appear in Appl. Phys. Letts. 56. 1853 (1990).Google Scholar
7. Hahn, H. and Averback, R.S., J. Appl. Phys. 67, 1113 (1990).Google Scholar
8. Granqvist, C.G. and Buhrman, R.A., J. Appl. Phys. 47, 2200 (1976).Google Scholar
9. Siegel, R.W., Ramasamy, S., Hahn, H., Zongquan, Li and Ting, Lu, J. Mater. Res. 3, 1367 (1988).Google Scholar
10. Birringer, R., Gleiter, H., Klein, H.P. and Marquardt, P., Physics Letters 102A, 365 (1984).Google Scholar
11. Chow, G.M., Klemens, P.G., and Strutt, P.R., J. Appl. Phys. 66 3304 (1989).Google Scholar