Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T15:41:57.308Z Has data issue: false hasContentIssue false

Low-resistance Ohmic Contacts to N-face p-GaN for the Fabrication of Functional Devices

Published online by Cambridge University Press:  31 January 2011

Seung-Cheol Han
Affiliation:
[email protected], Sunchon National University, Materials Science & Metallurgical Engineering, sunchon, Jeonnam, Korea, Republic of
Jae-Kwan Kim
Affiliation:
[email protected], Sunchon National University, Materials Science & Metallurgical Engineering, sunchon, Korea, Republic of
jun Young Kim
Affiliation:
[email protected], Sunchon National University, School of applied materials engineering, suncheon, Korea, Republic of
Joon Seop Kwak
Affiliation:
[email protected], Sunchon National University, Materials Science & Metallurgical Engineering, sunchon, Korea, Republic of
Kangho Kim
Affiliation:
[email protected], Korea Photonics Technology Institute, Gwangju, Korea, Republic of
Jong Kyo Kim
Affiliation:
[email protected], The Future Chips Constellation, Electrical, Computer, and Systems Engineering, Troy, New York, United States
E. Schubert
Affiliation:
[email protected], The Future Chips Constellation, Electrical, Computer, and Systems Engineering, Troy, New York, United States
Kyoung-Kook Kim
Affiliation:
[email protected], Korea Polytechnic University, Nano-Optical Engineering, Siheung, Korea, Republic of
Ji-Myon Lee
Affiliation:
[email protected], Sunchon National University, Materials Science & Metallurgical Engineering, suncheon, Korea, Republic of
Get access

Abstract

The electrical properties of Ni-based ohmic contacts N-face p-type GaN are presented. The specific contact resistance of N-face p-GaN exhibits a liner decrease from 1.01 × cm2 to 9.05 × 10-3 Ω cm2 for the as-deposited and the annealed Ni/Au contacts, respectively, with increasing annealing temperature Furthermore, the specific contact resistance could be decreased by four orders of magnitude to 1.03 × 10-4 Ω cm2 as a result of surface treatment using an alcohol-based (NH4)2S solution. The depth profile data measured by the intensity of O1s core peak in the x-ray photoemission spectra showed that the alcohol-based (NH4)2S treatment was effective in removing of the surface oxide layer of GaN. In addition, a Ga 2p core-level peak showed a red-shift of binding energy by 0.3 eV by alcohol-based (NH4)2S treatment, indicating that the surface Fermi level was shifted toward the valence-band edge. Thus, the low ohmic contact behavior observed in our treated sample might be explained in terms of the removal of the oxide layer and reducing the barrier heights by reduced band-bending effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys., Part 2 34, L797 (1995).Google Scholar
2 Nakamura, S., Senoh, M., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys., Part 2 35, L217 (1996).Google Scholar
3 Khan, M. Asif, Bhattarai, A. R., Kuznia, J. N., and Olson, D. T., Appl. Phys. Lett. 63, 1214 (1993).Google Scholar
4 Khan, M. Asif, Kuznia, J. N., Bhattarai, A. R., and Olson, D. T., Appl. Phys. Lett. 62, 1786 (1993).Google Scholar
5 Khan, M. Asif, Kuznia, J. N., Olson, D. T., Hove, J. M. Van, Blasingame, M., and Reitz, L. F., Appl. Phys. Lett. 60, 2917 (1993).Google Scholar
6 Bermudez, V. M., J. Appl. Phys. 80, 1190 (1996)Google Scholar
7 Kim, J. K., Lee, J.-L., Lee, J. W., Shin, H. E., Park, Y. J., and Kim, T., Appl. Phys. Lett. 73, 2953 (1998).Google Scholar
8 Jang, J.-S., Park, S.-J., and Seong, T.-Y., J. Vac. Sci. Technol. B 17, 2667 (1999).Google Scholar
9 Lee, J.-L., Kim, J. K., Lee, J. W., Park, Y. J., and Kim, T., Electrochem. Solid-State Lett. 3, 53 (2000).Google Scholar
10 Bessolov, V. N., Lebedev, M. V., and Zahn, D. R. T., J. Appl. Phys. 82, 2640 (1997).Google Scholar
11 Bessolov, V. N., Ivankov, A. F., Konenkova, E. V., and Lebedev, M. V., Tech. Phys. Lett. 21, 20 (1995).Google Scholar
12 Zhilyaev, Y. V., Kompan, M. E., Konenkova, E. V., and Raevskii, S. D., MRS Internet J. Nitride Semicond. Res. 4S1, G6.14 (1999)Google Scholar
13 Huh, C., Kim, S.-W., Kim, H.-S., Lee, I.-H., and Park, S.-J., J. Appl. Phys. 87, 4591 (2000)Google Scholar
14 Yuan, Z. L., Ding, X. M., Hu, H. T., Li, Z. S., Yang, J. S., Miao, X. Y., Chen, X. Y., Cao, X. A., Hou, X. Y., Lu, E. D., Xu, S. H., Xu, P. S., and Zhang, X. Y., Appl. Phys. Lett. 71, 3081 (1997).Google Scholar
15 Lin, Y.-J., Tsai, C.-D., Lyu, Y.-T., and Lee, C.-T., Appl. Phys. Lett. 77, 687 (2000).Google Scholar
16 Handbook of Chemistry and Physics, 64th ed., edited by Weast, R. C., Astle, M. J., and Beyer, W. H. (CRC, New York, 1985).Google Scholar
17 Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor contacts (Clarendon, Oxford, U.K. 1998).Google Scholar
18 Hattori, K. and Izumi, Y., J. Appl. Phys. 53, 6906 (1982).Google Scholar
19 Landgren, G., Ludeke, R., Jugnet, Y., Morar, J. F., and Himpsel, F. J., J. Vac. Sci. Technol. B 2, 351 (1984).Google Scholar