Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T03:19:39.906Z Has data issue: false hasContentIssue false

Low Temperature Syntheses of Transition Metal Bronzes with an Open Structure for High Rate Energy Storage

Published online by Cambridge University Press:  03 May 2013

X. Pétrissans
Affiliation:
Laboratoire de Chimie de la Matière Condensée, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France
V. Augustyn
Affiliation:
Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
D. Giaume
Affiliation:
Laboratoire de Chimie de la Matière Condensée, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France
P. Barboux
Affiliation:
Laboratoire de Chimie de la Matière Condensée, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France
B. Dunn
Affiliation:
Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
Get access

Abstract

Development of devices storing and delivering high-energy power such as supercapacitors is necessary to assist intermittent sources of energy. Most of the commercial systems are carbon-based, but due to their high surface charge, oxides offer a valuable alternative for high-rate energy storage. Among them, layered transition metal oxides with mixed valence properties present both good electronic and ionic conductivities suitable for application to electrochemical applications intermediate between capacitors and batteries. This work focuses on lamellar oxide bronzes based on cobalt MxCoO2 and vanadium MxV2O5 (M = H, Li, Na or K). A low temperature synthesis leads to high specific area particles (above 100 m2/g). Hydrated and anhydrous NaxCoO2 are promising cathode materials for aqueous supercapacitors, with a high capacity of more than 100 mAh/g obtained under 20 mV/s for the hydrated NaxCoO2. The MxV2O5 bronzes appear to be good candidates for organic supercapacitors, especially the LixV2O5 bronze, which shows a high stable capacity above 100 mAh/g (at 20 mV/s ie a charging time of 125 s).

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Simon, P., Gogotsi, Y., Nature Materials 7 (2008) 845854.CrossRefGoogle Scholar
Wang, J., Polleux, J., Lim, J., Dunn, B., J. Phys. Chem. C 111 (2007) 14925.CrossRefGoogle Scholar
Pell, W. G., Conway, Brian E., Journal of Power Sources 136 (2004) 334.CrossRefGoogle Scholar
Long, J.W., Swider, K.E., Merzbacher, C.I., Rolison, D.R., Langmuir 15 (1999) 780.CrossRefGoogle Scholar
Wang, Y., Yang, W., Zhang, S., Evans, D. G., Duan, X., J. Electrochem. Soc. 152 (2005) A2130.CrossRefGoogle Scholar
Gupta, V., Gupta, S., Miura, N., Journal of Power Sources 189 (2009) 1292.CrossRefGoogle Scholar
Pollet, M., Blangero, M., Doumerc, J. P., Decourt, R., Carlier, D., Denage, C. and Delmas, C., Inorg. Chem. 48 (2009) 9671.CrossRefGoogle Scholar
Takada, K., Sakurai, H., Takayama-Muromachi, E., Izumi, F., Dilanian, R. A. and Sasaki, T., Nature 422 (2003) 53.CrossRefGoogle Scholar
Tronel, F., Guerlou-Demourgues, L., Basterreix, M., Delmas, C., Journal of Power Sources 158 (2006) 722.CrossRefGoogle Scholar
Raistrick, I.D., Huggins, R.A., Solid State Ionics 9-10 (1983) 425430.CrossRefGoogle Scholar
Pétrissans, X., Bétard, A., Giaume, D., Barboux, P., Dunn, B., Sicard, L., Piquemal, J.-Y., Electrochimica Acta 66 (2012) 306312.CrossRefGoogle Scholar
Gharbi, N., Sanchez, C., Livage, J., Lemerle, J., Nejem, L., Lefebvre, J., Inorg. Chem. 21 (1982) 21582165.CrossRefGoogle Scholar
Livage, J., Coordination Chemistry Reviews, 178180 (1998) 9991018.CrossRefGoogle Scholar
Butel, M., Gautier, L., Delmas, C., Solid State Ionics 122 (1999) 271.CrossRefGoogle Scholar
Lindström, H., Södergren, S., Solbrand, A., Rensmo, H., Hjelm, J., Hagfeldt, A., Lindquist, S.-E., J. Phys. Chem. B, 1997, 101, 77177722.CrossRefGoogle Scholar