Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:20:10.848Z Has data issue: false hasContentIssue false

Low Dielectric Constant Thermostable Polymers

Published online by Cambridge University Press:  15 February 2011

B. Sillion
Affiliation:
UMR 102 CNRS-IFP, BP 3, 69390 Vernaison, France
G. Rabilloud
Affiliation:
Institut Français du Pétrole, BP 3, 69390 Vernaison, France
J. Garapon
Affiliation:
UMR 102 CNRS-IFP, BP 3, 69390 Vernaison, France
O. Gain
Affiliation:
UMR 102 CNRS-IFP, BP 3, 69390 Vernaison, France
J. Vallet
Affiliation:
UMR 102 CNRS-IFP, BP 3, 69390 Vernaison, France
Get access

Abstract

The dielectric properties of the heat-resistant heterocyclic polymers are governed by their chemical structure and the absence of unwanted dipoles. A polyphenylquinoxaline is taken as an example of the effect of the dipole symmetry. In the particular case of polyimides, it is obvious that the dehydrocyclization of the intermediate polyamic acid has to be completed to produce the lowest achievable permittivity. This is illustrated by the polycondensation in solution of the polyimides based on 4,4'-(9H-fluoren-9-ylidene)-bisbenzeneamine. In addition, the spatial conformation of the macromolecular chain can also play an important role. The chemistry of a polyimide prepared from 4,4'-(1,3-benzenedicarbonyl) bis(1,2-benzenedicarboxylic acid dianhydride) allows to discuss this topic. However, a dielectric constant of 2.7 seems to be the ultimate value achievable for dense films prepared with the most performing polymers. The introduction of homogeneously distributed micro-voids allows the preparation of dielectric films with a permittivity lower than 2.0. The modification of a polymer with tertiobutyl carbonate (t.BOC) groups is a promising approach because it offers a large processability window.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. St.Clair, T. L., in Polyimides, edited by Wilson, D., Stenzenberger, H. D. and Hergenrother, P. M., (Blackie, Chapman and Hall, New York, 1990), p. 74.Google Scholar
2. Hougham, G., Tesoro, G., Vichbeck, A. and Chapple-Soko, , J. D. Macromolecules 27, 5964, (1994).Google Scholar
3. Verdet, L., Reche, J., and Rabilloud, G., Electron. Packag. Product, reprint Jan. 1991.Google Scholar
4. Hedrick, J. L., Labadie, J., Russel, T., Hofer, D., and Wakharker, V., Polymer 34, 4117, (1993).Google Scholar
5. Hedrick, J. L and Charlier, , Y. Am. Chem. Soc., Polym. Div. Preprint 35(1), 345, (1994).Google Scholar
6. Hergenrother, P. M. and Levine, H. H., J. Polym. Sci., Part A1 5, 1453, (1965).Google Scholar
7. Hagnauer, G. L. and Mulligan, G. D., Macromolecules 6, 477, (1973).Google Scholar
8. Oraison, J. M., Boiteux, G., Seytre, G., Rabilloud, G., Senneron, M. and Sillion, B., Makromol. Chem., Makromol. Symp. 24, 341, (1989).Google Scholar
9. Verdet, L., Pascal, T., Rabilloud, G. and Muller, G., SPE/ANTEC Conf Proc., Atlanta 1988.Google Scholar
10. Desvignes, N., Thèse de doctorat, Université de Bourgogne, Jul. 1988.Google Scholar
11. Korshak, V. V., Vinogradova, S. V. and Vygodskii, Y. S., J. Macromol. Sci.-Rev. Macromol. Chem. Part C 11, 45, (1974).Google Scholar
12. Progar, D. J., Pratt, J. R. and St.Clair, T. L. NASA Techn. Memo. 108, 508, (1988).Google Scholar
13. Pratt, J. R., Clair, T. L. St., Blackwell, D. A. and Alphin, N. L., Polym. Eng. Sci. 29, 63, (1989).Google Scholar
14. Ahn, K. D., Lee, Y. H. and Koo, D. I., Polymer 33, 4851, (1992).Google Scholar
15. Quenneson, M. E., Garapon, J., Bartholin, M. and Sillion, B., Proc. 2nd Int. Conf. Polyimides, 74, (1985).Google Scholar