Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-01T01:11:49.694Z Has data issue: false hasContentIssue false

Large scale synthesis of vertical aligned CNT array on irregular quartz particles

Published online by Cambridge University Press:  01 February 2011

Qiang Zhang
Affiliation:
[email protected], Tsinghua Unviersity, Department of Chemical Engineering, Chemical Reaction Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, Beijing, 100084, China, People's Republic of, +86-10-62794136, +86-10-62772051
Jiaqi Huang
Affiliation:
[email protected], Department of Chemical Engineering, Tsinghua Unviersity, Beijing, 100084, China, People's Republic of
Mengqiang Zhao
Affiliation:
[email protected], Department of Chemical Engineering, Tsinghua Unviersity, Beijing, 100084, China, People's Republic of
Weizhong Qian
Affiliation:
[email protected], Department of Chemical Engineering, Tsinghua Unviersity, Beijing, 100084, China, People's Republic of
Yao Wang
Affiliation:
[email protected], Department of Chemical Engineering, Tsinghua Unviersity, Beijing, 100084, China, People's Republic of
Fei Wei
Affiliation:
[email protected], Department of Chemical Engineering, Tsinghua Unviersity, Beijing, 100084, China, People's Republic of
Get access

Abstract

Vertically aligned carbon nanotube (VACNT) arrays grown on quartz particles were produced in large amount via a floating catalysis process. Initially fast synchronous growth of VACNT arrays was observed, which is independently of the irregular shape and rough surface of the quartz particles. However, long VACNT arrays cracked and scattered anisotropically, depending on the irregular particles. The VACNTs have inner diameter of about 8.0 nm and relatively wide outer diameter distribution with a mean value of 36 nm. The outer diameter of CNTs, however, can be further decreased to 19 nm by tuning carbon source and concentration of catalyst precursor. The VACNTs have a high purity up to 97%. This work presents a simple way for controllable continuous production of VACNT array in large scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A. and Wang, G., Science 274, 1701 (1996).Google Scholar
2. Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P. and Provencio, P.N., P. N. Science 282, 1105 (1998).Google Scholar
3. Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M. and Dai, H.J. Science 283, 512 (1999)Google Scholar
4. Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G. and Ajayan, P.M., Nature 416, 495 (2002).Google Scholar
5. Singh, C., Shaffer, M.S.P., Koziol, K.K.K., Kinloch, I.A. and Windle, A.H., Chem. Phys. Lett. 372, 860 (2003).Google Scholar
6. Xiang, R., Luo, G.H., Qian, W.Z., Wang, Y., Wei, F. and Li, Q., Chem. Vapor Depos 13, 533 (2007).Google Scholar
7. Zhang, Q., Huang, J.Q., Wei, F., Xu, G.H., Wang, Y., Qian, W.Z. and Wang, D.Z., Chinese Sci. Bull. 52, 2896 (2007).Google Scholar
8. Santomaso, A., Lazzaro, P. and Canu, P., Chem. Eng. Sci. 58, 2857 (2003).Google Scholar
9. Jong, J.A.H. de, Hoffmann, A.C. and Finkers, H.J., Chem. Eng. Prog. 95, 25 (1999).Google Scholar
10. Zhang, Q., Huang, J.Q., Zhao, M.Q., Qian, W.Z., Wang, Y. and Wei, F., Carbon, Under Review.Google Scholar
11. Zhang, Q., Zhou, W.P., Qian, W.Z., Xiang, R., Huang, J.Q., Wang, D.Z. and Wei, F., J. Phys. Chem. C 111, 14638 (2007).Google Scholar
12. Zhou, W.P., Wu, Y.L., Wei, F., Luo, G.H. and Qian, W.Z., Polymer 46, 12689 (2005).Google Scholar
13. Zhang, X.F., Cao, A.Y., Wei, B.Q., Li, Y.H., Wei, J.Q., Xu, C.L. and Wu, D.H., Chem. Phys. Lett. 362, 285 (2002).Google Scholar
14. Tapaszto, L., Kertesz, K., Vertesy, Z., Horvath, Z.E., Koos, A.A., Osvath, Z., Sarkozi, Z., Darabont, A. and Biro, L.P., Carbon 43, 970 (2005).Google Scholar
15. Barreiro, A., Selbmann, D., Pichler, T., Biedermann, K., Gemming, T., Rummeli, M.H., Schwalke, U. and Buchner, B., Appl. Phys. A 82, 719 (2006).Google Scholar
16. Lukic, B., Seo, J.W., Bacsa, R.R., Delpeux, S., Beguin, F., Bister, G., Fonseca, A., Nagy, J. B., Kis, A., Jeney, S., Kulik, A. J. and Forro, L., Nano Lett. 5, 2074 (2005).Google Scholar
17. Qian, C., Qi, H., Gao, B., Cheng, Y., Qiu, Q., Qin, L.C., Zhou, O. and Liu, J., J. Nanosci. Nanotechnol. 6, 1346 (2006).Google Scholar
18. Huang, J.Q., Zhang, Q., Wei, F., Qian, W.Z., Wang, D.Z., Hu, L., Carbon 46, 191 (2008).Google Scholar