Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T09:25:10.826Z Has data issue: false hasContentIssue false

A Kinetic Model for the Stability of the Spent Fuel Matrix Under Oxic Conditions: Model Development Against Experimental Evidence

Published online by Cambridge University Press:  03 September 2012

Jordi Bruno
Affiliation:
QuantiSci, Pare Tecnologie del Vallès, 08290 Cerdanyola del Vallès, Barcelona (Spain).
E. Cera
Affiliation:
QuantiSci, Pare Tecnologie del Vallès, 08290 Cerdanyola del Vallès, Barcelona (Spain).
L. Duro
Affiliation:
QuantiSci, Pare Tecnologie del Vallès, 08290 Cerdanyola del Vallès, Barcelona (Spain).
T. E. Eriksen
Affiliation:
Dept. of Nuclear Chemistry, Royal Institute of Technology, S 100 44, Stockholm (Sweden).
P. Sellin
Affiliation:
Swedish Nuclear Fuel and Waste Management (SKB), Box 5864, S 102 48, Stockholm (Sweden).
K. Spahiu
Affiliation:
Swedish Nuclear Fuel and Waste Management (SKB), Box 5864, S 102 48, Stockholm (Sweden).
L. O. Werme
Affiliation:
Swedish Nuclear Fuel and Waste Management (SKB), Box 5864, S 102 48, Stockholm (Sweden).
Get access

Abstract

A kinetic model recently developed [1] for the radiolytically induced oxidative dissolution of the spent fuel matrix is presented. This is based on experimental studies on the generation and evolution of radiolytic products in a closed system containing fragments of PWR-fuel [2]. The outcome of this model is currently being integrated in the present PA exercise being prepared by SKB. The calibration of the model against various experimental information and its predictive capabilities for the long term performance of the spent fuel matrix are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brano, J., Cera, E., Duro, L., Eriksen, T.E. and de Pablo, J., SF-96 QuantiSci Progress Report. Draft version 2.0, July 1996.Google Scholar
2. Eriksen, T.E., Eklund, U.B., Werme, L.O. and Bruno, J., J. Nucl. Mater. 227, 76 (1995).Google Scholar
3. White, A.F. and Yee, A., Geochim. Cosmochim. Acta 49, 1263 (1985).Google Scholar
4. Brano, J., Cera, E., Duro, L. and Ahonen, L., TVO Technical Report, 1996. In press.Google Scholar
5. Bruno, J., Cera, E., Duro, L., Eriksen, T.E. and Werme, L.O., J. Nucl. Mater. (1996). In press.Google Scholar
6. Scott, M.J. and Morgan, J.J., Energetics and Conservative Properties of Redox Systems, in: Chemical Modeling of Aqueous Systems, Chapter 29 (American Chemical Society, 1990), p. 368.Google Scholar
7. Finch, R.J. and Ewing, R.C., J. Nucl. Mater. 190, 133 (1992).Google Scholar
8. Sunder, S., Shoesmith, D.W., Bailey, M.B., Stanchell, F.W. and Mclntyre, N.S., J. Electroanal. Chem. 130, 163 (1981).Google Scholar
9. SKB91, SKB/TR–92–20, 1992.Google Scholar
10. Lasaga, A.C., Soler, J.M., Ganor, J., Burch, T.E. and Nagy, K.L., Geochim. Cosmochim. Acta 58, 2361 (1994).Google Scholar
11. Casas, I., Ph.D. Thesis, Universitat Autònoma de Barcelona, 1989.Google Scholar
12. Jansson, M., Jonsson, M. and Eriksen, T.E., SKB Internal Report, 1994.Google Scholar
13. Johnson, L.H., and Schoesmith, D.W., Spent Fuel, in: Radioactive waste forms for the future, edited by Lutze, W. and Ewing, R.C. (Elsevier Science Publishers, B.V., 1988).Google Scholar
14. Torrero, M.E., Baraj, E., Casa, I., Giménez, J. and de Pablo, J., Radiochim. Acta (1995). Submitted.Google Scholar
15. Shoesmith, D.W. and Sunder, S., J. Nucl. Mater. 190, 20 (1992).Google Scholar
16. Giménez, J., Ph.D. Thesis, Universitat de Barcelona, 1996.Google Scholar
17. Hiskey, J.B., The Institution of Mining and Metallurgy 622. 775: 622. 7–349. 52, 1980.Google Scholar
18. Bruno, J., Casas, I. and Puigdomènech, I., Geochim. Cosmochim. Acta 55, 647 (1991).Google Scholar
19. Forsyth, R.S., Werme, L.O. and Bruno, J., J. Nucl. Mater. 138, 1 (1986).Google Scholar
20. Bruno, J., and Duro, L., QuantiSci Internal Report, September 1950.Google Scholar
21. Puigdomènech, I. and Bruno, J., SKB/TR-91–04, 1991.Google Scholar
22. Ollila, K., Report YJT-95–14, 1995.Google Scholar
23. Finch, R.J., and Ewing, R.C., SKB/TR-91–15, 1991.Google Scholar