Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T03:25:39.205Z Has data issue: false hasContentIssue false

Isomeric Higher and Smaller Fullerenes: A Profound Enthalpy/Entropy Interplay

Published online by Cambridge University Press:  10 February 2011

X. Zhao
Affiliation:
Laboratories of Computational Chemistry & Fullerene Science, Department of Knowledge-Based Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan
Z. Slanina
Affiliation:
Laboratories of Computational Chemistry & Fullerene Science, Department of Knowledge-Based Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan
E. Ōsawa
Affiliation:
Laboratories of Computational Chemistry & Fullerene Science, Department of Knowledge-Based Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan
Get access

Abstract

Computations of isomeric fullerenes are performed at semiempirical and ab initio quantum-chemical levels: C36, C72, C88. C36 fullerenes and quasi-fullerenes are computed at the SAM1 level, and then at the B3LYP/6-31G* level. Altogether 598 cages are considered. The SAM1 method is also applied to C72, i.e., the solitary isolated-pentagon-rule (IPR) structure and several non-IPR isomers. Finally, the complete set of thirty five topologically different IPR isomers of C88 is computed. In all the cases, energetics is combined with entropy contributions based on the harmonic-oscillator and rigid-rotator model. Considerable temperature effects on the relative stabilities in the systems are found. Relationships to available observed data are discussed throughout and a good agreement is found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Slanina, Z., Chem. Phys. Lett. 173, 164 (1990).Google Scholar
2. Slanina, Z., Chem. Phys. Lett. 142, 512 (1987).Google Scholar
3. Slanina, Z., Int. Rev. Phys. Chem. 6, 251 (1987).Google Scholar
4. Slanina, Z., Adamowicz, L., Bakowies, D., Thiel, W., Thermochim. Acta 202, 249 (1992).Google Scholar
5. Slanina, Z. and Adamowicz, L., Fullerene Sci. Technol. 1, 1 (1993).Google Scholar
6. Achiba, Y., Kikuchi, K., Aihara, Y., Wakabayashi, T., Miyake, Y., Kainosho, M., in Science and Technology of Fullerene Materials, edited by Bernier, P., Bethune, D. S., Chiang, L. Y., Ebbesen, T. W., Metzger, R. M., Mintmire, J. W. (Materials Research Society, Pittsburgh, 1995), p. 3.Google Scholar
7. Slanina, Z., François, J.-P., Bakowies, D., Thiel, W., J. Mol. Struct. (Theochem) 279, 213 (1993).Google Scholar
8. Sun, M.-L., Slanina, Z., Lee, S.-L., Uhlik, F., Adamowicz, L., Chem. Phys. Lett. 246, 66 (1995).Google Scholar
9. Slanina, Z., Lee, S.-L., Kobayashi, K., Nagase, S., J. Mol. Struct. (Theochem) 339, 89 (1995).Google Scholar
10. Slanina, Z., François, J.-P., Kolb, M., Bakowies, D., Thiel, W., Fullerene Sci. Technol. 1, 221 (1993).Google Scholar
11. Slanina, Z., Lee, S.-L., Yoshida, M., Ōsawa, E., Chem. Phys. 209, 13 (1996).Google Scholar
12. Slanina, Z., Lee, S.-L., Yoshida, M., Ōsawa, E., in Physics and Chemistry of Fullerenes and Their Derivatives, edited by Kuzmany, H., Fink, J., Mehring, M., Roth, S. (World Sci. Publ., Singapore, 1996), p. 389.Google Scholar
13. Slanina, Z., Zhao, X., Lee, S.-L., Ōsawa, E., Chem. Phys. 219, 193 (1997).Google Scholar
14. Slanina, Z., Zhao, X., Ōsawa, E., Advan. Strain. Inter. Org. Mol. 7, 185 (1999).Google Scholar
15. Dewar, M. J. S., Jie, C., Yu, J., Tetrahedron, 49, 5003 (1993).Google Scholar
16. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., Stewart, J. J. P., J. Am. Chem. Soc. 107, 3902 (1985).Google Scholar
17. Stewart, J. J. P., J. Comput. Chem. 10, 209 (1989).Google Scholar
18. AMPAC 6.0 (Semichem, Shavnee, KS, 1997).Google Scholar
19. Stewart, J. J. P., MOPAC 5.0, QCPE 455 (Indiana University, 1990).Google Scholar
20. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Gill, P. M. W., Johnson, B. G. Robb, M. A., Cheeseman, J. R., Keith, T., Petersson, G. A., Montgomery, J. A., Raghavachari, K., Al-Laham, M. A., Zakrzewski, V. G., Ortiz, J. V Foresman, J. B., Peng, C. Y., Ayala, P. Y., Chen, W., Wong, M. W., Andres, J. L., Replogle, E. S., Gomperts, R., Martin, R. L., Fox, D. J., Binkley, J. S., Defrees, D. J., Baker, J., Stewart, J. P., Head-Gordon, M., Gonzalez, C., Pople, J. A., Gaussian 94 (Gaussian, Inc., Pittsburgh, PA, 1995).Google Scholar
21. Gal'pern, E. G., Stankevich, I. V., Chistyakov, A. L., Chernozatonskii, L. A., JEPT Lett. 55, 483 (1992).Google Scholar
22. Piskoti, C., Yarger, J., Zettl, A., Nature 393, 771 (1998).Google Scholar
23. Slanina, Z., Zhao, X., Ōsawa, E., Chem. Phys. Let. 290, 311 (1998).Google Scholar
24. Ōsawa, E., Ueno, H., Yoshida, M., Slanina, Z., Zhao, X., Nishiyama, M., Saito, H., J. Chem. Soc., Perkin Trans. 2 943 (1998).Google Scholar
25. Fowler, P. W. and Manolopoulos, D. E., An Atlas of Fullerenes (Clarendon Press, Oxford, 1995).Google Scholar
26. Kobayashi, K., Nagase, S., Yoshida, M., Ōsawa, E., J. Am. Chem. Soc. 119, 12693 (1997).Google Scholar
27. Slanina, Z., Zhao, X., Ōsawa, E., in Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, Vol. 6, edited by Kadish, K., Ruoff, R. S. (The Electrochemical Society, Pennington, 1998), p. 19.Google Scholar
28. Achiba, Y., Miyake, Y., Ishiwatari, H., Kainosho, M., Kikuchi, K., in MRS Boston 1998 Fall Meeting (MRS, Pittsburgh, 1998), Abstract S2.2.Google Scholar