Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T04:40:27.823Z Has data issue: false hasContentIssue false

Investigation of an Alternative Chemical Etchant for Mercuric Iodide Detectors

Published online by Cambridge University Press:  21 February 2011

Dominique C David
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
J. Van Scyoc
Affiliation:
Carnegie Mellon University, Pittsburgh, PA 15213
Mardik Khudatyan
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
R. B. James
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
R. J. Anderson
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
T. E. Schlesingfer
Affiliation:
Carnegie Mellon University, Pittsburgh, PA 15213
Get access

Abstract

At present a 10% KI solution is commonly used as an etchant for HgI2 crystals. Recent photoluminescence (PL) spectra from such etched samples show that impurities contained in the KI solution dope the HgI2 during the etching process. Some of these dopants are known to cause carrier trapping in the detectors fabricated from the material. Thus, it is desirable to find an alternative etchant that does not create new defects in HgI2. Etchants studied here include deionized water, 10% potassium iodide (KI), methanol, and acetone. The results of acetone as an etchant reveal only small changes in the PL spectra after etching. Methanol etching causes the incorporation of a deep radiative recombination center in HgI2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bao, X. J., Schlesinger, T. E., James, R. B., Stulen, R. H., Ortale, C., and Cheng, A. Y., J. Appl. Phys. 68, 86 (1990).CrossRefGoogle Scholar
2. James, R. B., Bao, X. J., Schlesinger, T. E., Markakis, J. M., Cheng, A. Y., and Ortale, C., J. Appl. Phys. 66, 2578 (1989).Google Scholar
3. Bao, X.J., Schlesinger, T. E., James, R. B., Gentry, G. L., Cheng, A. Y., and Ortale, C., J. Appl Phys. 69, 4247 (1991).Google Scholar
4. Bao, X. J., Schlesinger, T. E., James, R. B., Stulen, R. H., Ortale, C. and Berg, L. van den, J. Appl. Phys. 67, 7265 (1990).Google Scholar
5. Bao, X. J., Ph.D. Dissertation, Carnegie Mellon University, 1991.Google Scholar
6. James, R. B., Bao, X. J., Schlesinger, T. E., Ortale, C., and Cheng, A. Y., J. Appl. Phys. 67, 2571 (1990).Google Scholar
7. James, R. B., Bao, X. J., Schaesinger, T. E., Haney, S. J., Cheng, A. Y., Gerrish, V., and Ortale, C., Nucl. Instrum. Meth. A317, 194 (1992).Google Scholar
8. Bao, X. J., Schlesinger, T. E., James, R. B., Ortale, C., and Berg, L. van den, J. Appl. Phys. 68, 2951 (1990).Google Scholar
9. Novikov, R. V. and Pimonenko, M. M., Sov. Phys. Semicond. 4, 1785 (1971).Google Scholar