Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T12:05:43.178Z Has data issue: false hasContentIssue false

Integrated (Ba,Sr)TiO3 Thin-Film Technology for RF and Microwave Applications

Published online by Cambridge University Press:  01 February 2011

Toshimasa Suzuki
Affiliation:
[email protected], Taiyo Yuden Co., Ltd., Materials R&D department, 5607-2 Nakamuroda, Takasaki, Gunma, WY, 370-3347, Japan, +81273608307, +81273608315
Daiki Ishii
Affiliation:
[email protected], Taiyo Yuden Co., Ltd., Materials R&D div., 5607-2 Nakamuroda, Takasaki, Gunma, 370-3347, Japan
Yoshiki Iwazaki
Affiliation:
[email protected], Taiyo Yuden Co., Ltd., Materials R&D div., 5607-2 Nakamuroda, Takasaki, Gunma, 370-3347, Japan
Kentaro Morito
Affiliation:
[email protected], Taiyo Yuden Co., Ltd., Materials R&D div., 5607-2 Nakamuroda, Takasaki, Gunma, 370-3347, Japan
Youichi Mizuno
Affiliation:
[email protected], Taiyo Yuden Co., Ltd., Materials R&D div., 5607-2 Nakamuroda, Takasaki, Gunma, 370-3347, Japan
Get access

Abstract

The microwave tunable capability and its related material optimization of (Ba,Sr)TiO3 thin films in the parallel-plate capacitor form is discussed in terms of the dependence of barium concentration, acceptor doping, and in-plane film stress, based on the present broadband microwave characterization technique under various bias fields. The barium-content dependence indicates the tradeoff between tunability and dielectric loss, and the notable field-induced loss in SrTiO3 is confirmed as an intrinsic quasi-Debye contribution. The Mg dopant incorporated into a perovskite lattice shows almost no effectiveness on tunable device performance, except for enhanced insulation as an electron acceptor, while the low bias-field dependence of the dielectric loss suggests the possibility of the partial occupation of the alkaline-earth-ion site by Mg. The reduction of in-plane thermal stress controlled by the pressure during sputtering deposition leads to higher permittivity and tunability while degrading the film crystallinity by ion bombardment. The low-frequency loss tends to increase with crystal damage; however, the microwave loss remains unchanged, revealing the applicability of sputtering stress control to real microwave devices. In addition, we demonstrate the operation of an analog phase shifter using parallel-plate ferroelectric tunable capacitors and its application to a phased array antenna monolithically integrated on a silicon substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mizuno, Y. Hagiwara, T. and Kishi, H. J. Ceram. Soc. Japan 115, 360364 (2007).Google Scholar
2. Imanaka, Y.Multilayered Low Temperature Cofired Ceramics (Ltcc) Technology,” (Springer, 2004)Google Scholar
3. Miyazaki, M. Ida, K. Miyazaki, M. Sawatari, T. Yokota, H. Kobayashi, H. Hamada, Y. Sugiyama, Y., Arai, R. and Nakamura, Y. J. J. Inst. Electronics Packaging 10, 298304 (2007).Google Scholar
4. Ota, K. Iizuka, F. Satomi, M. Yasuda, M. Nakajima, K. Ogino, T. and Fujimoto, M. J. Ceram. Soc. Japan 110, 5, 436 (2002).Google Scholar
5. Godara, L.C., Proc. IEEE, 1031-1060 (1997).Google Scholar
6. Taeksoo, Ji, Yoon, H. Abraham, J.K. and Varadan, V.K. IEEE Trans. Microw. Theory Tech. 54, 3, 11311138 (2006).Google Scholar
7. Zhao, Z. Wang, X. Choi, K. Lugo, C. and Hunt, A. T. IEEE Trans. Microw. Theory Tech. 55(2), 430437 (2007)Google Scholar
8. Vendik, O.G. Hollmann, E.K. Kozyrev, A.B. and Prudan, A.M. J. Superconductivity, 12(2), 325338 (1999).Google Scholar
9. Tagantsev, A.K. Sherman, V.O. Astafiev, K.F. Venkatesh, J. and Setter, N. J. Electroceramics, 11(1-2) 566 (2003)Google Scholar
10. Gurevich, V.L. and Tagantsev, A.K. Advances in Physics, 40, 6, 719767 (1991)Google Scholar
11. Georgian, S. Vorobiev, A. Kuylenstierna, D. Deleniv, A. Abadei, S. Eriksson, A. and Rundqvist, P., Integrated Ferroelectrics, 66, 125 (2004).Google Scholar
12. Iwazaki, Y. Ohta, K. and Suzuki, T. J. European Ceram. Soc. 26(10-11), 18411844 (2006).Google Scholar
13. Smolenskii, G.A. and Isupov, V.A. Zhurnal Tekhnicheskoi Fiziki, 24, 1375 (1954).Google Scholar
14. DiDomenico, M. Porto, S.P.S. and Wemple, S. H. Phys. Rev. Lett. 19, 855857 (1967).Google Scholar
15. Jonscher, A. K. J. Phys. D: Appl. Phys. 32, R57–R70 (1999).Google Scholar
16. Morito, K. Iwazaki, Y. Suzuki, T. and Fujimoto, M. J. Appl. Phys. 94, 5199 (2003).Google Scholar
17. Tagantsev, A.K. and Astafiev, K.F. Integrated Ferroelectrics 39(1-4), 251260 (2001).Google Scholar
18. Tenne, D.A. Soukiassian, A. Zhu, M.H. Clark, A.M. Xi, X.X. Choosuwan, H. He, Q. Guo, R. and Bhalla, A.S. Phys. Rev. B67, 012302 (2003).Google Scholar
19. Yuan, Z. Lin, Y. Weaver, J. Chen, X. and Chen, C.L. Appl. Phys. Lett. 87, 152901 (2005).Google Scholar
20. Zhu, X.H. Zheng, D.N. Peng, W. Li, J. and Chen, Y.F. Mater. Lett. 60(9-10), 12241228 (2006)Google Scholar
21. Li, R. Cheng, J. Meng, Z. and Wu, W. J. Mater. Sci.: Mater. in Elec., 17(8), 587591 (2006).Google Scholar
22. Jeon, Y.A. Seo, T.S. and Yoon, S.G. Jpn. J. Appl. Phys. 40(11), 64966500 (2001)Google Scholar
23. Chiu, M.C. Yao, H.C. Huang, C.J. and Shieu, F.S. J. Appl. Phys. 102, 014110 (2007)Google Scholar
24. Suzuki, T. Nishi, Y. and Fujimoto, M. Jpn. J. Appl. Phys. 39(1), 192196 (2000)Google Scholar
25. Vendik, O.G. Vendik, I.B. and Sherman, V.O. Integrated Ferroelectrics 43(1), 8189 (2002)Google Scholar
26. Morito, K. and Suzuki, T. J. Appl. Phys. 97, 104107 (2005)Google Scholar
27. Devonshire, A.F. J. Advances in Physics, 3(10), 85130 (1954)Google Scholar
28. Pertsev, N.A. Zembilgotov, A.G. and Tagantsev, A.K. Phys. Rev. Lett. 80, 19881991 (1998)Google Scholar
29. Park, W.Y. Ahn, K.H. and Hwang, C.S. Appl. Phys. Lett., 83, 4387 (2003)Google Scholar
30. Hancock, T.M. and Rebeiz, G.M. IEEE Trans. Microw. Theory Tech. 53(3), 977983 (2005)Google Scholar