Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T10:10:09.323Z Has data issue: false hasContentIssue false

Influence of Si-Doping on Carrier Localization of Mocvd-Grown InGaN/GaN Multiple Quantum Wells

Published online by Cambridge University Press:  15 February 2011

Yong-Hoon Cho
Affiliation:
Center for Laser and Photonics Research and Department of Physics Oklahoma State University, Stillwater, OK 74078
T. J. Schmidt
Affiliation:
Center for Laser and Photonics Research and Department of Physics Oklahoma State University, Stillwater, OK 74078
S. Bidnyk
Affiliation:
Center for Laser and Photonics Research and Department of Physics Oklahoma State University, Stillwater, OK 74078
J.J. Song
Affiliation:
Center for Laser and Photonics Research and Department of Physics Oklahoma State University, Stillwater, OK 74078
S. Keller
Affiliation:
Electrical and Computer Engineering and Materials Departments University of California, Santa Barbara, CA 93106
U.K. Mishra
Affiliation:
Electrical and Computer Engineering and Materials Departments University of California, Santa Barbara, CA 93106
S.P. DenBaars
Affiliation:
Electrical and Computer Engineering and Materials Departments University of California, Santa Barbara, CA 93106
Get access

Abstract

We have systematically studied the influence of Si doping on the optical characteristics of InGaN/GaN multiple quantum wells (MQWs) using photoluminescence (PL), PL excitation (PLE), and time-resolved PL spectroscopy combined with studies of optically pumped stimulated emission and structural properties from these materials. The MQWs were grown on 1.8-μm-thick GaN layers on c-plane sapphire films by metalorganic chemical vapor deposition. The structures consisted of 12 MQWs with 3-nm-thick InGaN wells, 4.5-nm-thick GaN barriers, and a 0.1 -μm-thick Al0.07Ga0.93N capping layer. The Si doping level in the GaN barriers was varied from 1 × 1017 to 3 × 1019 cm3. PL and PLE measurements show a decrease in the Stokes shift with increasing Si doping concentration. The 10 K radiative recombination lifetime was observed to decrease with increasing Si doping concentration (n), from ∼ 30 ns (for n < 1 × 1017 cm-3) to ∼4 ns (for n = 3 x 1019 cm-3). To elucidate whether non-radiative recombination processes affect the measured lifetime, the temperature-dependence of the measured lifetime was investigated. The reduced Stokes shift, the decrease in radiative recombination lifetime, and the increase in structural and interface quality with increasing Si doping indicate that the incorporation of Si in the GaN barriers results in a decrease in carrier localization at potential fluctuations in the InGaN active regions and the interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys. Part 2 34, L1332 (1995).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 69, 4056 (1996).Google Scholar
3. Lim, B. W., Chen, Q. C., Yang, J. Y., and Khan, M. A., Appl. Phys. Lett. 68, 3761 (1996).Google Scholar
4. Wu, Y. F., Keller, B. P., Keller, S., Kapolnek, D., Kozodoy, P., DenBaars, S. P., and Mishra, U. K., Appl. Phys. Lett. 69, 1438 (1996).Google Scholar
5. Yang, X. H., Schmidt, T. J., Shan, W., Song, J. J., and Goldenberg, B., Appl. Phys. Lett. 66, 1 (1995).Google Scholar
6. Morkoq, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar
7. Ruvimov, S., Liliental-Weber, Z., Suski, T., Ager, J. W. III, Washburn, J., Krueger, J., Kisielowski, C., Weber, E. R., Amano, H., and Akasaki, I., Appl. Phys. Lett. 69, 990 (1996).Google Scholar
8. Schubert, E. F., Goepfert, I. D., Grieshaber, W., and Redwing, J. M., Appl. Phys. Lett. 71, 921 (1997).Google Scholar
9. Grudowski, P. A., Eiting, C. J., Park, J., Shelton, B. S., Lambert, D. J. H., and Dupuis, R. D., Appl. Phys. Lett. 71, 1537 (1997).Google Scholar
10. Keller, S., Abare, A. C., Minsky, M. S., Wu, X. H., Mack, M. P., Speck, J. S., Hu, E., Coldren, L. A., Mishra, U. K., and DenBaars, S. P., Materials Science Forum 264–268, 1157 (1998).Google Scholar
11. Bidnyk, S., Schmidt, T. J., Cho, Y. H., Gainer, G. H., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 72, 1623 (1998).Google Scholar
12. Salvador, A., Liu, G., Kim, W., Aktas, O., Botchkarev, A., and Morkoq, H., Appl. Phys. Lett. 67, 3322 (1995).Google Scholar
13. Zeng, K. C., Lin, J. Y., Jiang, H. X., Salvador, A., Popovici, G., Tang, H., Kim, W., and Morkoq, H., Appl. Phys. Lett. 71, 1368 (1997).Google Scholar
14. Cho, Y. H., Fedler, F., Hauenstein, R. J., Park, G. H., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., J. Appl. Phys. (to be published).Google Scholar
15. Cho, Y. H., Gainer, G. H., Fischer, A. J., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 73, 1370 (1998).Google Scholar
16. Osten, H. J., Klatt, J., Lippert, G., Dietrich, B., and Bugiel, E., Phys. Rev. Lett. 69, 450 (1992).Google Scholar
17. Eaglesham, D. J., Unterwald, F. C., and Jacobson, D. C., Phys. Rev. Lett. 70, 966 (1993).Google Scholar
18. Schmidt, T. J., Cho, Y. H., Gainer, G. H., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 73, 560 (1998); ibid. 73, 1892 (1998).Google Scholar