Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T03:00:20.641Z Has data issue: false hasContentIssue false

InAs quantum dots in AlAs/GaAs short period superlattices: structure, optical characteristics and laser diodes

Published online by Cambridge University Press:  21 March 2011

Vadim Tokranov
Affiliation:
UAlbany Institute for Materials, University at Albany–SUNY, 251 Fuller Rd, Albany, NY 12203
M. Yakimov
Affiliation:
UAlbany Institute for Materials, University at Albany–SUNY, 251 Fuller Rd, Albany, NY 12203
A. Katsnelson
Affiliation:
UAlbany Institute for Materials, University at Albany–SUNY, 251 Fuller Rd, Albany, NY 12203
K. Dovidenko
Affiliation:
UAlbany Institute for Materials, University at Albany–SUNY, 251 Fuller Rd, Albany, NY 12203
R. Todt
Affiliation:
UAlbany Institute for Materials, University at Albany–SUNY, 251 Fuller Rd, Albany, NY 12203
S. Oktyabrsky
Affiliation:
UAlbany Institute for Materials, University at Albany–SUNY, 251 Fuller Rd, Albany, NY 12203
Get access

Abstract

The influence of two monolayer - thick AlAs under- and overlayers on the formation and properties of self-assembled InAs quantum dots (QDs) has been studied using transmission electron microscopy (TEM) and photoluminescence (PL). Single sheets of InAs QDs were grown inside a 2ML/8ML AlAs/GaAs short-period superlattice with various combinations of under- and overlayers. It was found that 2.4ML InAs QDs with GaAs underlayer and 2ML AlAs overlayer exhibited the lowest QD surface density of 4.2×1010 cm-2 and the largest QD lateral size of about 19 nm as compared to the other combinations of cladding layers. This InAs QD ensemble has also shown the highest room temperature PL intensity with a peak at 1210 nm and the narrowest linewidth, 34 meV. Fabricated edge-emitting lasers using triple layers of InAs QDs with AlAs overlayer demonstrated 120 A/cm2 threshold current density and 1230 nm emission wavelength at room temperature. Excited state QD lasers have shown high thermal stability of threshold current up to 130°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arakawa, Y., and Sakaki, H., Appl. Phys. Lett., 40, 939 (1982).Google Scholar
2. Leonard, D., Kishnamurthy, M., Reaves, C. M., et al., Appl. Phys. Lett., 63, 3203 (1993).Google Scholar
3. Ledentsov, N. N., Ustinov, V. M., Egorov, A. Yu., et al., Semicond., 28, 832 (1994).Google Scholar
4. Bimberg, D., Ledentsov, N. N., Grundmann, M., et al., Physica E., 3, 129 (1998)Google Scholar
5. Park, G., Huffaker, D. L., Zou, Z., et al., IEEE Photon. Technol. Lett., 11, 301 (1999).Google Scholar
6. Eliseev, P. G., Li, H., Stintz, A., Newell, T. C., et al., Appl. Phys. Lett., 77, 262 (2000).Google Scholar
7. Huang, X., Stintz, A., Hains, C. P., et al., IEEE Photon. Technol. Lett., 12, 227 (2000).Google Scholar
8. Chu, L., Arzberger, M., Böhm, G., and Abstreiter, G., J. Appl. Phys., 85, 2355 (1999).Google Scholar
9. Fafard, S., Wasilewski, Z. R., Allen, C. Ni., Picard, D., et al., Phys. Rev. B, 59, 15368 (1999).Google Scholar
10. Joyce, P. B., Krzyzewski, T. J., Bell, G. R., et al., Phys. Rev. B., 58, R15981 (1998).Google Scholar
11. Brandt, O., Tapfer, L., Ploog, K., Bierwolf, R., et al., Appl. Phys. Lett., 61, 2814 (1992).Google Scholar
12. Woggon, U., Langbein, W., Hvam, J. M., et al., Appl. Phys. Lett., 71, 377 (1997).Google Scholar
13. Arzberger, M., Käsberger, U., Böhm, G., et al., Appl. Phys. Lett., 75, 3968 (1999).Google Scholar
14. Tsatsul'nikov, A. F., Kovsh, A. R., Zhukov, A. E., et al., J. Appl. Phys., 88, 6272 (2000).Google Scholar
15. Yakimov, M., Tokranov, V., and Oktyabrsky, S., MRS Symp. Proc., 648, P2.6.1 (2001).Google Scholar