Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T13:42:54.629Z Has data issue: false hasContentIssue false

Impact of the deposition conditions of window layers on lowering the metastability effects in Cu(In,Ga)Se2/CBD ZnS-based solar cell

Published online by Cambridge University Press:  21 August 2013

N. Naghavi
Affiliation:
Institute of Research and Development on Photovoltaic Energy (IRDEP), 6 quai Watier, 78401 Chatou, France
T. Hildebrandt
Affiliation:
Institute of Research and Development on Photovoltaic Energy (IRDEP), 6 quai Watier, 78401 Chatou, France
G. Renou
Affiliation:
Institute of Research and Development on Photovoltaic Energy (IRDEP), 6 quai Watier, 78401 Chatou, France
S. Temgoua
Affiliation:
Institute of Research and Development on Photovoltaic Energy (IRDEP), 6 quai Watier, 78401 Chatou, France
JF. Guillemoles
Affiliation:
Institute of Research and Development on Photovoltaic Energy (IRDEP), 6 quai Watier, 78401 Chatou, France
D. Lincot
Affiliation:
Institute of Research and Development on Photovoltaic Energy (IRDEP), 6 quai Watier, 78401 Chatou, France
Get access

Abstract

The purpose of the present paper is to focus on the impact of oxygen gas partial pressure during the sputtering of i-ZnO and ZnMgO on the transient behavior of solar cells parameters when a CBD-ZnS buffer layer is used. Based on electrical characterization of cells, we have observed that the effect of light-soaking is different on J-V characteristics depending on the quantity of oxygen present during the first deposition time of the i-ZnO or ZnMgO layers. In fact, we have noticed that, when cells are prepared with standard i-ZnO, the efficiencies are very low and a pronounced transient behavior is observed. However, when the i-ZnO or ZnMgO is first formed by a few nanometers sputtered layer without any additive oxygen, depending on the thickness of this layer, the transient effects strongly decrease. It is then possible to reach efficiencies quite similar to the CdS reference cells, especially with ZnMgO, without any post-treatments.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Naghavi, N., Abou-Ras, D., Allsop, N., Barreau, N., Bücheler, S., Ennaoui, A., Fischer, C.-H., Guillen, C., Hariskos, D., Herrero, J., Klenk, R., Kushiya, K., Lincot, D., Menner, R., Nakada, T., Platzer-Björkman, C., Spiering, S., Tiwari, A. N., et Törndahl, T., « Buffer layers and transparent conducting oxides for chalcopyrite Cu(In, Ga)(S, Se)2 based thin film photovoltaics: present status and current developments », Progress in Photovoltaics: Research and Applications, vol. 18, no 6, p. 411433, sept. 2010.CrossRefGoogle Scholar
Hariskos, D., Menner, R., Jackson, P., Paetel, S., Witte, W., Wischmann, W., Powalla, M., Bürkert, L., Kolb, T., Oertel, M., Dimmler, B., et Fuchs, B., « New reaction kinetics for a high-rate chemical bath deposition of the Zn(S, O) buffer layer for Cu(In, Ga)Se2-based solar cells », Progress in Photovoltaics: Research and Applications, vol. 20, no 5, p. 534542, août 2012.CrossRefGoogle Scholar
Nakamura, M., Chiba, Y., Kijima, S., Horiguchi, K., Yanagisawa, Y., Sawai, Y., Ishikawa, K., et Hakuma, H., « Achievement of 17.5% efficiency with 30x 30cm2-sized Cu(In, Ga)(Se, S)2 submodules », in 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), 2012, p. 001807001810.CrossRefGoogle Scholar
Hariskos, D., Fuchs, B., Menner, R., Naghavi, N., Hubert, C., Lincot, D., et Powalla, M., « The Zn(S, O, OH)/ZnMgO buffer in thin-film Cu(In, Ga)(Se, S)2-based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In, Ga)Se2 solar cells », Progress in Photovoltaics: Research and Applications, vol. 17, no 7, p. 479488, nov. 2009.CrossRefGoogle Scholar
Hubert, C., Naghavi, N., Roussel, O., Etcheberry, A., Hariskos, D., Menner, R., Powalla, M., Kerrec, O., et Lincot, D., « The Zn(S, O, OH)/ZnMgO buffer in thin film Cu(In, Ga)(S, Se) 2-based solar cells part I: Fast chemical bath deposition of Zn(S, O, OH) buffer layers for industrial application on Co-evaporated Cu(In, Ga)Se2 and electrodeposited CuIn(S, Se)2 solar cells », Progress in Photovoltaics: Research and Applications, vol. 17, no 7, p. 470478, nov. 2009.CrossRefGoogle Scholar
Shimakawa, S., Hashimoto, Y., Hayashi, S., Satoh, T., et Negami, T., « Annealing effects on Zn1−xMgxO/CIGS interfaces characterized by ultraviolet light excited time-resolved photoluminescence », Solar Energy Materials and Solar Cells, vol. 92, no 9, p. 10861090, sept. 2008.CrossRefGoogle Scholar
Shin, D. H., Kim, J. H., Shin, Y. M., Yoon, K. H., Al-Ammar, E. A., et Ahn, B. T., « Improvement of the cell performance in the ZnS/Cu (In, Ga) Se2 solar cells by the sputter deposition of a bilayer ZnO: Al film », Progress in Photovoltaics: Research and Applications, 2012.Google Scholar